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Note

The latest version of this document can be found online at https://dr-knz.net/
measuring-errors-vs-exceptions-in-go-and-cpp.html. Alternate formats: Source, PDF.

Introduction

The following document investigates the performance of signalling errors from functions in Go and C++.
In contrast with the previous analyses that focused on a single topic, here three separate topics are inves-
tigated:

« what is the difference in performance when using the same mechanisms in Go vs C++ (language
comparison);

+ what is the difference in performance between signaling by returning error values, vs signaling
errors via exceptions (mechanism comparison);

« how and when using exceptions for uncommon errors provide better performance than error
returns in both C++ and Go.

This is a follow-up to the Go calling convention on x86-64, Measuring argument passing in Go and
C++ and Measuring multiple return values in Go and C++.

Note

This document was designed as Jupyter Notebook. The notebook and accompanying data files
can be downloaded here.

Mechanisms for signalling errors

There are two common mechanisms to signal uncommon errors in modern programming languages:

« returning multiple values, one of which can be set to indicate an error condition. This is the most
common mechanism in Go, and is promoted in Rust via the Result type. In this mechanism, each
intermediate caller must check the error value and switch to an alternate control path if an error is
detected. The overhead cost of these intermediate checks is paid on every call, even when errors
are uncommon.

« returning simple values, and throwing (or raising) an exception to indicate an error condition. The
common code path is simple; the language run-time system is responsible for stack unwinding to
propagate exceptions to the top level caller where they are handled. This is the most common mech-
anism in Java, and well-supported by most languages (including Go, where exceptions are called
“panics”).

The emphasis in the first point above gives us the working hypothesis for the present analysis: since
intermediate error returns incur a price paid even when error do not occur, they must be worse for per-
formance. How much so?

We can predict this will be a trade-off, based on the following observations:
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« the intermediate checks on the common case are costly, so “it must be better for performance” to
not have them; however

« when using exceptions, the point in the top level caller where exceptions are caught must set up an
exception handler, which must happen everytime even if the error case is uncommon. This may be
costly too!

So the trade-off is really comparing the cost of the intermediate checks vs. the cost of setting up an
exception handler.
We can then further predict what these costs will be.

Predicting the cost of error signalling via error returns

Based on my previous analysis on the Go calling convention, we can make an educated guess as follows:

« in Go, an error result “costs” two words of storage because error is an interface type; also, the result
values are passed via memory and copied at every intermediate call, so we will see error propagation
incur two memory stores to return an error value alongside the main result in leaf functions; two
memory loads and a conditional branch to check the error on intermediate calls; plus two additional
memory stores on intermediate calls to propagate the error value (or no error) on their return path.

« in C++, an error result usually costs just one word, because either it is a simple type or a heap-
allocated object and C++ uses simple pointers to refer to them (the vtable pointer, if an abstract base
class is used, is stored in the object itself, not its reference). Assuming the main result is a simple
value too, both the main result value and the error value can be passed using registers. The overhead
is thus one register initialization in the leaf function; plus one register test and conditional branch
in the intermediate calls; and one more register initialization on intermediate calls in their return
path.

Overall, we can thus expect an overhead twice larger in Go compared to C++, based on the instruction
count alone. We will test this hypothesis experimentally.

Of note, the cost of signaling errors via error returns is multipled by the size of the computational work
performed; namely, by the number of dynamic calls and returns during the work. It is thus not a fixed
overhead. We will come back to this.

Predicting the cost of error signaling via exceptions

In comparison, returning errors via exceptions does not incur the overhead of passing and checking error
results in leaf and intermediate functions. So the performance of that part of the work should be identical
as when there is no error handling whatsoever.

There are two prices paid for exception handling:

« when setting up the exception handler in the top level function where errors are handled; this must
occur every time even when errors do not actually occur;

« when propagating the exception, when errors do occur.
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In this analysis, we are focusing on the cost of error handling when errors are rare/uncommon, so we
will keep the cost of handling an error that does occur out of scope (and instead keep it as topic for a later
analysis). Instead, we will focus on the mandatory costs paid even when errors do not occur.

What is the cost of setting up exception handling?

C++ was designed with the principle of “zero cost abstraction”, where a programmer must not have
to pay (in resource usage or performance) the price of an abstraction that is not used. This principle is
applied to exception handling: there is no extra work in the generated code to prepare a function for
receiving an exception. When there is no exception (error), the code behaves as if there was no try/catch
block at all.

Therefore we can expect the overhead of signalling uncommon errors to be truly zero in a C++ program.
(We’ll measure that.)

In Go, in contrast, setting up an exception handler requires extra work. The exception handler has to
run from a deferred call, so the point where the error is to be handled must pay the price of using defer. The
exception handler uses the built-in function recover(), which must be called in all cases, even when there is
no error. In turn, internally, this function inspects a data structure in memory (the goroutine’s status bits)
to determine whether an exception is being propagated.

So overall the cost of setting up an exception handler in Go is that of setting up the defer initially,
then on the return path the cost of iterating over the deferred callback list, a call to the deferred function
containing the call to recover(), and then the cost of recover() when there is no exception to be caught.

This cost is certainly larger than that of C++, and we will want to measure it below.

Meanwhile, ahead of time, we can also already predict it is constant: it does not depend on the size of
the call stack, the size of other return values, the number of calls and returns, the size of the function, etc.

A constant cost will be interesting because it means it can be amortized: there will be cases where
there is enough computational work to be done “under” the exception handler that it offsets the fixed
overhead. How much work exactly? We will look into it via measurements.

Experimental setup

The source code for the experiments can be found here: http://github.com/knz/callbench. There are mul-
tiple experiment sources in that repository, today we are focusing on the err experiments: comparing the
cost of signalling errors via error returns and exceptions, in Go and in C++.

Establishing a baseline

To measure the overhead of each mechanism, we must set up a reference point to use as baseline.
For this purpose we will use the following functions:

//go:noinline
func workNoErr(work int) int {
var n int
for i :=0; i <work; i++ {
// The work parameter controls how much work is performed.
n += leafNoErr(work + 1)
}
return n

}

//go:noinline
func leafNoErr(arg int) int {
if arg == 0 {


https://dr-knz.net/go-calling-convention-x86-64.html#implementation-of-panic
http://github.com/knz/callbench

// Unlikely error case.
return -1
}
// Common non-error case.
return id(arg)

}

//go:noinline
func id(arg int) int { return arg }

The main function worknoerr takes a parameter work which controls how much work is to be performed;
it is designed so that the amount of work grows linearly with the value of the parameter.

It calls teafnoerr which represents a “unit of computation”. It contains an “unlikely” code path which
we will later modify to raise an error.

The baseline teafnoarg is not truly a leaf because it in turn calls the non-inline function id to compute
its final result. This is needed to ensure that teafNoArg contains at least one function call, and thus forces
the compiler to emit a function prologue to set up an activation record. This is done to ensure a fairer
comparison when we add error handling, where the prologue will also be mandatory.

The various functions are marked with //go:nointine to prevent the compiler from folding the computa-
tion to a constant result.

We then benchmark the code as follows:

func benchNoErr(work int, b *testing.B) {
val =1
for i :=0; i < b.N; i++ {
val += workNoErr(work)

}
CONSUME (b, val)

}

func BenchmarkNoErrl(b *testing.B) { benchNoErr(1, b); }
func BenchmarkNoErr2(b *testing.B) { benchNoErr(2, b); }
/// etc.

We use the final consuve function as described in the previous article, to prevent the compiler from
optimizing the loop away.

The equivalent C++ code is then implemented alongside, also using tricks to prevent compiler opti-
mizations that would reduce the amount of work to nothing.

We then instantiate 17 variants of these benchmarks, with values of work between 0 and 10 inclusive,
and then 20, 50, 100, 200, 500, 1000.

The benchmark kernel uses in Go the standard go test -bench infrastructure. In C++, it uses the library
cppbench which re-implements the go test -bench infrastructure in C++, so that we are measuring the same
things in the same way in both languages.

Measuring error returns

The functions we are going to measure are defined as follows.
In Go, we add a standard error return to the baseline function defined above:

//go:noinline
func leafErr(arg int) (int, error) {
if arg == 0 {
// Unlikely error case.
return 0, errObj

}
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// Common non-error case.
return id(arg), nil

}

//go:noinline
func workErr(work int) int {
var n int
for i :=0; i < work; i++ {
val, err := leafErr(work)
if err != nil {
return 42
}
n += val
}
return n

}

This function computes the same result as worknoerr above in the common case where no error occurs.
In fact, the error can never occur in this specific example, but the Go compiler does not know this. This is
why this function is a good instrument to measure the overhead of error propagation when errors do not
occur.

For the C++ code, we define an abstract error type like in Go with an instance errobj, and we then
implement the equivalent code, again with tricks to prevent too much cleverness in compiler optimizations.
We use std: :tuple to return an error alongside a result value.

As before, we generate 17 variants of these benchmarks, from work size 0 to 10 and then 20, 50, 100,
200, 500, 1000.

Measuring exception signalling for uncommon/rare errors

We are going to use the following functions, which compute the same results as those above but using a
different mechanism for error handling:

//go:noinline
func leafExc(arg int) int {
if arg == 0 {
// Unlikely error case.
panic(errObj)
}
// Common non-error case.
return id(arg)

}

//go:noinline
func workExc(work int) (res int) {
defer func() {
if r := recover(); r !'= nil {
res = 42
}
10
var n int
for i :=0; i < work; i++ {
n += leafExc(work + 1)
}
return n

}

The C++ code is implemented likewise, with try/catch and throw for exceptions.
As before, we generate 17 variants of these benchmarks, from work size 0 to 10 and then 20, 50, 100,
200, 500, 1000.



Running the benchmarks
We run all these 102 benchmarks as follows:

® cd go; make err_go.log

e cd cpp; make err_cpp.log

Then we copy the two log files into the directory of the Jupyter notebook.
The specific measurements illustrated in the rest of this document were obtained in the following
environment:

« CPU: AMD Ryzen 7 1800X 3593.33MHz Family=0x17 Model=0x1 Stepping=1
» OS: FreeBSD 12.0-ALPHAZ2 r338241
. go version 1.10.3 freebsd/amd64

+ C++ FreeBSD clang version 6.0.1 (tags/RELEASE_601/final 335540)

Data preparation

We will use the same data preprocessing as the previous articles. Check the corresponding section there
for an explanation.

import re

def load(fname, pattern):
data = [x for x in open(fname).read().split('\n') if re.match(pattern, x) is not None]
data = [x[9:] for x in datal

return data

data = ['Go/' + x for x in load('err go.log', 'Benchmark(Exc|Err|NoErr)')] + \
['Cpp/' + x for x in load('err _cpp.log', 'Benchmark(Exc|Err|NoErr)"')]
print ("number of results:", len(data))

print ("example result row: %r" % data[0])

number of results: 102
example result row: 'Go/NoErr0 12000000000t 2.19 ns/op'

import re

r = re.compile('~(1S+) | s+1S+\s+(\1S+)|s+.*")

data = [m.groups() for m in [r.match(x) for x in data] if m is not None]
print ("example result row: %r" % (datal0],))

example result row: ('Go/NoErr0', '2.19')

data = [(x[0], float(x[1])) for x in datal
print("example result row: %r" % (data[0],))

example result row: ('Go/NoErr0', 2.19)

def filterdata(pattern):
r = re.compile(pattern)

matchvals = [(r.match(x[0]), x[1]) for x in datal
xvals = [int(i[0].group(1l)) for i in matchvals if i[0] is not None]
yvals = [i[1] for i in matchvals if i[0] is not None]

return xvals, yvals
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xgo, ygo = filterdata('Go/NoErr(\d+)"')

# Really the X values are the same for all series.

# We'll use the series letter "e" to denote error-returns,
# and "p" to denote "exceptions"

xvals = xgo

_, yego = filterdata('Go/Err(\d+)")

_, ypgo = filterdata('Go/Exc(\d+)")

_, ycpp = filterdata('Cpp/NoErr(\d+)")

_, yecpp = filterdata('Cpp/Err(\d+)")

~, ypcpp = filterdata('Cpp/Exc(\d+)")

Data analysis

We'll use matplotiib for plotting. This needs to be initialized first:

%matplotlib inline

import matplotlib
import matplotlib.pyplot as plt

Understanding the baseline

We plot our baseline first, to understand where we’re at. Based on the previous analysis of argument
passing and return values, we expect the C++ code to be about a third faster or more, because it uses three
times fewer instructions.

plt.figure(figsize=(15, 8))

plt.subplot(2,2,1)

plt.plot(xvals, ygo, label='go baseline')

plt.plot(xvals, ycpp, label='c++ baseline')

plt.title('Latency of computation (total)')

plt.ylabel('total nanoseconds')

plt.xscale('log'); plt.yscale('log')

plt.legend()

plt.subplot(2,2,3)

plt.plot(xvals[:10], ygo[:10], label='go baseline')
plt.plot(xvals[:10], ycpp[:10], label='c++ baseline')
plt.title('Latency of computation (total, zoom on small work)')
plt.ylabel('total nanoseconds')

plt.xlabel('work N (zoomed in)')

plt.legend()

plt.subplot(2,2,2)

plt.plot(xvals[1l:], [y/x for (x,y) in zip(xvals[1l:],ygo[1l:])], label='go"')
plt.plot(xvals[1l:1, [y/x for (x,y) in zip(xvals[1l:],ycpp[1l:1)], label='c++')
plt.title('Mean latency per unit of work')

plt.ylabel('Mean nanoseconds/workunit')

plt.xscale('log"')

plt.legend()

plt.subplot(2,2,4)

plt.plot(xvals, [100.*((y2-yl)/y2) for (yl,y2) in zip(ygo,ycpp)])
plt.title('How faster is Go relative to C++')

plt.ylabel('s difference')

plt.xlabel('work N')

plt.xscale('log"')

plt.show()
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What does this tell us?

As we wanted, the total latency increases linearly with the work parameter.

Also as expected, the Go code is somewhat slower than the equivalent C++ code, about 50% in the
“skeleton® of worknoerr (When teafnoerr is never called), down to about 30% faster when there is enough work
to amortize the initial overhead of setting up the activation record.

We can also see a phase change at about 6 units of work, most clearly revealed in the top right graph:
when that threshold is reached, the latency per unit of work suddenly increases. Given that a similar
bump occurs for C++ and Go, it is hard to blame some memory/cache effect (the C++ code uses much less
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memory than the Go code). It is yet unclear to me what architectural feature causes this bump. I suspect
a pessimisation in the branch predictor, but I would not know how to test this hypothesis.

Other than this odd phase change at around 6 units of work, the overall performance behavior is regular
and well aligned with the predictions.

A measure of the overhead of error return propagation
Let us look at the measurement of the same function with error returns added.

def baseplots(ysgo, yscpp, lbl):
plt.figure(figsize=(15, 8))
plt.subplot(2,2,1)
plt.plot(xvals, ysgo, label='go '+1lbl)
plt.plot(xvals, yscpp, label='c++ '+1lbl)
plt.title('Latency of computation (total)')
plt.ylabel('total nanoseconds')
plt.xscale('log'); plt.yscale('log')
plt.legend()
plt.subplot(2,2,3)
plt.plot(xvals[:10], ysgo[:10], label='go '+1lbl)
plt.plot(xvals[:10], yscpp[:10], label='c++ '+1lbl)
plt.title('Latency of computation (total, zoom on small work)"')
plt.ylabel('total nanoseconds"')
plt.xlabel('work N (zoomed in)')
plt.legend()
plt.subplot(2,2,2)
plt.plot(xvals[1l:]1, [y/x for (x,y) in zip(xvals[1l:],ysgo[1:])], label='go '+1lbl)
plt.plot(xvals[1l:]1, [y/x for (x,y) in zip(xvals[l:],yscpp[l:]1)], label='c++ '+lbl)
plt.title('Mean latency per unit of work')
plt.ylabel('Mean nanoseconds/workunit')
plt.xscale('log"')
plt.legend()
plt.subplot(2,2,4)
plt.plot(xvals, [100.*((y2-yl)/y2) for (yl,y2) in zip(ysgo,yscpp)])
plt.title('How faster is Go relative to C++')
plt.ylabel('%s difference')
plt.xlabel('work N')
plt.xscale('log"')
plt.show()

baseplots(yego, yecpp, 'errors')
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What does this tell us?

The shape of the data is very close to that of the baseline. It is hard to see anything! To provide clarity,

we should instead substract the baseline;

def relplots(ysgo, yscpp, 1lbl):
ovhgo = [y-ybase for (y,ybase) in zip(ysgo, ygo)]
ovhcpp = [y-ybase for (y,ybase) in zip(yscpp, ycpp)]

plt.figure(figsize=(15, 8))
plt.subplot(2,2,1)
plt.plot(xvals, ovhgo, label='go errs')
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plt.plot(xvals, ovhcpp, label='c++ errs')

plt.title('Overhead latency (total)')

plt.ylabel('Overhead nanoseconds')

plt.xscale('log'); plt.yscale('log"')

plt.legend()

plt.subplot(2,2,3)

plt.plot(xvals[:10], ovhgo[:10], label='go errs')

plt.plot(xvals[:10], ovhcpp[:10], label='c++ errs')
plt.title('Overhead latency (total, zoom on small work)"')
plt.ylabel('Overhead nanoseconds')

plt.xlabel('work N (zoomed in)')

plt.legend()

plt.subplot(2,2,2)

plt.plot(xvals[1l:]1, [o/x for (x,0) in zip(xvals[l:],ovhgo[l:]1)], label='go errs')
plt.plot(xvals[1l:], [o/x for (x,0) in zip(xvals[l:],ovhcpp[l:]1)], label='c++ errs')
plt.title('Mean overhead latency per unit of work')

plt.ylabel('mean overhead ns/workunit')

plt.xscale('log")

plt.legend()

plt.subplot(2,2,4)

plt.plot(xvals, [100.*((yl-y2)/yl) for (yl,y2) in zip(ovhgo, ovhcpp)l)
plt.title('How much more overhead in Go relative to C++')
plt.ylabel('s%s difference')

plt.xlabel('work N')

plt.xscale('log")

plt.show()

relplots(yego, yecpp, 'errors')
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Wowzer, there is some surprising behavior in here.

Perhaps the most simple to understand is the behavior of the Go code. As expected, there is an extra
overhead for each unit of work — the cost of error checking and propagation is paid on every return. The
two left graphs show the total overhead increase with the size of the workload.

The top right graph shows the average overhead per work unit: between 0.20 and 0.30 nanoseconds,
paid by the two extra instructions.

As to the C++ code, the data show something interesting. For small amounts of work (up to about 6
units) there is an overhead per unit of work; beyond that, the overhead becomes negligible — as if there
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was no extra work performed for error checking!

Meanwhile, of course the machine code executed is the same regardless of work size, so the extra work
is actually performed. How come does this not show up in measurements?

We are seeing here an effect of hardware optimizations in the micro-architecture, which we already
saw at work in the original analysis on argument passing: the test of the error return and the conditional
increment of the loop variable var are independent from the work performed in teaferr, and so the superscalar
issue unit in the processor can schedule the first instructions of the next call of teaferr in parallel with the
instructions to check the error return of the previous call to teaferr. Although the total amount of work is
greater, the pipelining hides this difference and it shows up in measurements as zero marginal overhead.

The reason why this optimization does not kick in for the Go code is that it works when the computation
uses mostly registers; the Go code is too memory-heavy for the hardware issue unit to detect the potential
data concurrency.

The final bottom right graph confirms the initial hypothesis that the overhead of error checking/propagation
in Go is at least twice larger as that of C++.

Finally, another way to look at the overhead is to compute it as a percentage cost over the baseline
compute latency:

def prelplots(ysgo, yscpp, lbl):
ygorelbase = [100.*((y-ybase)/ybase) for (y,ybase) in zip(ysgo, ygo)]
ycpprelbase = [100.*((y-ybase)/ybase) for (y,ybase) in zip(yscpp, ycpp)]

plt.figure(figsize=(15, 8))

plt.subplot(2,2,1)

plt.plot(xvals, ygorelbase, label='go '+lbl+' %ovh')
plt.plot(xvals, ycpprelbase, label='c++ '+lbl+' %ovh')
plt.title('Overhead relative to baseline')

plt.ylabel('Overhead %')

plt.xscale('log');

plt.legend()

plt.subplot(2,2,3)

plt.plot(xvals[:10], ygorelbase[:10], label='go '+lbl+' %ovh')
plt.plot(xvals[:10], ycpprelbase[:10], label='c++ '+lbl+' %ovh')
plt.title('Overhead relative to baseline (zoom on small work)"')
plt.ylabel('Overhead %')

plt.xlabel('work N (zoomed in)')

plt.legend()

plt.subplot(2,2,2)

plt.plot(xvals[1l:1, [y/x for (x,y) in zip(xvals[l:], ygorelbase[l:])], label='go '+lbl+' %ovh"')
plt.plot(xvals[1l:], [y/x for (x,y) in zip(xvals[1l:], ycpprelbase[l:])], label='c++ '+lbl+' %ovh')
plt.title('Mean overhead relative to baseline per unit of work')
plt.ylabel('mean % overhead/workunit')

plt.xscale('log');

plt.legend()

plt.show()

prelplots(yego, yecpp, 'errs')
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As a percentage of the baseline, the C++ code incurs a larger overhead than Go for small work sizes
(but the baseline is sufficiently small that the absolute latency result is still lower than Go’s).

As the work size increases, Go’s relative overhead becomes greater, which combined with the larger
baseline latency is rather unfortunate.

A measure of the fixed cost of error signalling via exceptions

The other mechanism we are studying in this analysis uses exceptions (“panics” in Go) to signal errors.
To summarize the experimental set-up, we are using functions that are written to prepare for the
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eventuality of error (i.e. set up an exception handler) but never actually signal an error (because errors are

<« b
uncommon”).

Here is the measured latency for the same parameters as above:

baseplots(ypgo, ypcpp, 'exceptions')
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What does this tell us?

% difference

Fully as expected, C++ has no overhead for setting up an exception handler, whereas the Go code pays
about 45 nanoseconds upfront. This price is constant regardless of the work size, so is amortized as the
work size grows.
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The bottom right graph confirms that the initial overhead in Go can be amortized: for small work sizes
the relative performance hit compared to C++ is huge, but as the work size grows the difference is reduced
(and converges, if we zoom in on the y-axis for larger work sizes, to the 40% perf difference between the
two languages observed with the baseline).

To clarify this data further, we can focus on the overhead by substracting the baseline latency, and
looking at this difference as a percentage of the baseline latency:

prelplots(ypgo, ypcpp, 'exceptions')
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Again, fully as expected, C++ incurs no overhead on the individual work units.
The overhead in Go is constant and independent of work size. It can thus be amortized: it decreases
as a percentage of the baseline latency when the work size grows.

Comparing mechanisms
Let us now compare the mechanisms to each other.

plt.figure(figsize=(15, 8))

plt.subplot(2,2,1)

plt.plot(xvals, ygo, label='go baseline')
plt.plot(xvals, yego, label='go error returns')
plt.plot(xvals, ypgo, label='go panics')
plt.title('Latency of computation (total)')
plt.ylabel('total nanoseconds')

plt.legend()

plt.subplot(2,2,3)

plt.plot(xvals[:10], ygo[:10], label='go baseline')
plt.plot(xvals[:10], yego[:10], label='go error returns')
plt.plot(xvals[:10], ypgo[:10], label='go panics')
plt.title('Latency of computation (total, zoom on small work)')
plt.ylabel('total nanoseconds')

plt.xlabel('work N (zoomed in)')

plt.legend()

plt.subplot(2,2,2)

plt.plot(xvals, ycpp, label='c++ baseline')
plt.plot(xvals, yecpp, label='c++ error returns')
plt.plot(xvals, ypcpp, label='c++ exceptions')
plt.title('Latency of computation (total)')
plt.ylabel('total nanoseconds')

plt.legend()

plt.subplot(2,2,4)

plt.plot(xvals[:10], ycpp[:10], label='c++ baseline')
plt.plot(xvals[:10], yecpp[:10], label='c++ error returns')
plt.plot(xvals[:10], ypcpp[:10], label='c++ exceptions')
plt.title('Latency of computation (total, zoomed in)')
plt.ylabel('total nanoseconds')

plt.xlabel('work N (zoomed in)')

plt.legend()

plt.show()

19



Latency of computation (total)

— go baseline -
3000 1 go error returns "
—— go panics —~
. 25001 aor
o
=
S 2000 4
@
=]
£ 1500 -
=
:‘g 1000 -
500 1
D p
0 200 400 600 800 1000

Latency of computation (total, zoom on small work)

ag{ —— go baszeline
go error retums
101 — go panics

total nanoseconds

work M (zoomed in)

The data is pretty unambiguous:

+ in C++, which mechanism is used in C++ to signal does not impact latency meaningfully. When
looking closely, error returns are objectively more expensive (more instructions executed) than using

exception handling, but micro-architectural optimizations can hide this difference.

« in Go, there is a fixed overhead of at least 40 nanoseconds for setting up an exception handler;

however

« when the work “under the error handling” is large enough, signaling using exceptions (when they
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are uncommon/rare) is more efficient and yields clearly lower latencies.

We can zoom into the graph to find the inflection point:

plt.figure(figsize=(15, 4))

plt.plot(xvals[13:15], ygo[13:15], label='go baseline')
plt.plot(xvals[13:15], yego[13:15], label='go error returns')
plt.plot(xvals[13:15], ypgo[13:15], label='go panics')
plt.title('Latency of computation (total, inflection point)')
plt.ylabel('total nanoseconds')

plt.xlabel('work N (zoomed in)')

plt.legend()

plt.show()
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That is, using exceptions to signal errors “pays off” performance-wise when there is about 500 nanosec-
onds worth of work “under” the point exceptions are handled.

Reminder/disclaimer: this result is measured in the context of the test program we are studying. The
inflection point may lie at a different work size in your own code. Run your own experiments.

Summary and conclusions

The particular way the Go compiler generates code makes error signalling via return values incur a non-
negligible performance overhead — between 4% and 10% in our tests — compared to code which only
returns its main results.

This price is mostly incurred by Go’s usage of memory to pass return values (a choice unlikely to be
revisited any time soon, as per the discussion on a proposal to change it).

When using exceptions instead to signal errors (“panics” in Go), this overhead is eliminated from the
computation code in the common case when errors do not occur. However! The fixed cost to set up an
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exception handler in go, even when exceptions are uncommon/rare, goes upwards of dozens of nanoseconds.
Therefore, exception handling in Go is only advantageous performance-wise relative to error returns when
there is enough work “under” the error handler to offset this fixed cost.

(In comparison, C++ code generators commonly apply the “zero cost abstraction” principle and ensure
that exceptions do not cost anything unless they actually occur — so adding a try/catch block does not
reduce performance in any way.)

A fixed cost of dozens of nanoseconds (~45ns on this test system) is no small change compared to “sim-
ple” computations. However, in real world code, a software component may launch many computations
on behalf of a single API call, and that API entry point can catch errors for all of them. For example, a
SQL database needs only capture and report one error for the entire execution of a query, and SQL queries
often cost milliseconds to execute; in that case, exception handling would be unequivocally better for
performance than error return checking/propagation.

The empirical record for Go “best software practices” for error signalling when errors are rare/uncommon
thus evolves as follows:

Use case Error returns Exceptions (“panics” in Go)
Tutorial-level examples with  Prog Pros
little relevance to the real
world » seemingly simple to « none
use
« simple to explain
Cons Cons
» none « harder to explain
 confusing for begin-
ners
Lightweight or one-shot Pros Pros
computations but with
non-trivial implementation + unclear « condenses the
makes it easier to read
and maintain over time
Cons Cons

boilerplate, repetitive
code

cumbersome to write

lots of noise when
reading and maintain-
ing the code

22

needs discipline to use
defer consistently to
maintain RAII

.. continued on next page
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Use case Error returns Exceptions (“panics” in Go)

Performance-sensitive code,  Pros Pros
where short latencies and/or
high throughput matter * none

Cons Cons

. makes the code

slower, increases
latency and reduces
throughput

boilerplate, repetitive
code

« cumbersome to write

+ lots of noise when
reading and maintain-
ing the code

makes the code faster

condenses the code,
makes it easier to read
and maintain over time

needs discipline and
use defer consistently
to ensure RAII

needs empirical anal-
ysis of which level is
adequate to catch ex-
ceptions and turn them
into errors

Note

of error return checking/propagation in Go 2.

checked/propagated on every intermediate call.

There is a proposal floating around to introduce syntactic sugar to ease the writing and reading

While this may improve the readability and maintainability of the code, it has no bear-
ing on performance: even with this proposal, under the hood, errors are still returned and

So even/if that proposal gets implemented, exceptions still be the better choice for performance.

Further reading
Also in the series:

+ The Go low-level calling convention on x86-64
+ Measuring argument passing in Go and C++

« Measuring multiple return values in Go and C++

+ The Go low-level calling convention on x86-64 - New in 2020 and Go 1.15

« Errors vs exceptions in Go and C++ in 2020
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