Measuring argument passing in Go and C++

Raphael ‘kena’ Poss

August 2018

modified: 2020-12-01

slug: measuring-argument-passing-in-go-and-cpp

category: Programming

tags: golang, compilers, analysis, programming languages, c++
series: Go low-level code analysis

Contents

Introduction 3
Experimental setup 3
Data preparation 5

Data transformation 5

Data filtering / extraction 6
Data analysis 6
Summary and conclusions 9
Copyright and licensing 10

Note

The latest version of this document can be found online at https://dr-knz.net/
measuring-argument-passing-in-go-and-cpp.html. Alternate formats: Source, PDF.

Introduction

The following document investigates the performance of passing arguments to functions in Go, and com-
pare that to C++.

This is a follow-up to an earlier article I wrote on the Go calling convention on x86-64. It provides
some quantitative insight into the observations made in that earlier analysis.

We focus here on just one of the aspects of the Go calling sequence: passing arguments to functions
and how the number of arguments influences performance.

Further analysis of the other aspects of calling sequences (return values, errors, exceptions) are out of
scope and I will revisit these topics later.

Note

This document was designed as Jupyter Notebook. The notebook and accompanying data files
can be downloaded here.

Experimental setup

The source code for the experiments can be found here: http://github.com/knz/callbench. There are multi-
ple experiment sources in that repository, today we are focusing on the nargs experiments: comparing the
result of passing varying number of arguments to Go and C++ functions.

The functions we are going to measure look like this:

« in Go,

//go:noinline
func f4(a0,al,a2,a3 int) int { return ab+al+a2+a3 }

func BenchmarkArg4(b *testing.B) {
val =1
for i :=0; 1 < b.N; i++ {
val += f4(i,i,i,1i);
}
CONSUME (b, val);
}

o in C++,

__attribute ((noinline))
long f4(long a0,long al,long a2,long a3) { return aO+al+a2+a3; }
void BenchmarkArg4(B* b) {
long val = 1, N = b->N;
for (long i = 0; i < N; i++) {
NOP(1);
val += f4(i,i,i,1);
}
CONSUME (b, val);

https://dr-knz.net/measuring-argument-passing-in-go-and-cpp.html
https://dr-knz.net/measuring-argument-passing-in-go-and-cpp.html
https://dr-knz.net/measuring-argument-passing-in-go-and-cpp.txt
https://dr-knz.net/measuring-argument-passing-in-go-and-cpp.pdf
https://dr-knz.net/go-calling-convention-x86-64.html
https://jupyter.org/
measuring-argument-passing-in-go-and-cpp/notebook.zip
http://github.com/knz/callbench

There are 21 variants of these benchmarks, from 0 to 20 arguments passed. They are generated by the
accompanying gen nargs.sh scripts.

In every case, the function sums its arguments and returns the result. I chose the addition as this is
probably the cheapest operation that can be performed on the processor and so will not dominate the cost
of function calls. Both versions use the native 64-bit integer type, called int in Go and tong in C++.

The functions are marked as nointine to ensure they are not inlined in the benchmark kernel, and the
call sequence in machine code eliminated, by optimizations.

The benchmark kernel uses in Go the standard go test -bench infrastructure. In C++, it uses the library
cppbench which re-implements the go test -bench infrastructure in C++, so that we are measuring the same
things in the same way in both languages.

You will probably notice that the benchmarking kernel must use a special consume() function/macro.
We must do this in both languages to ensure the result of the computaiton by the benchmarking loop
is eventually used. Otherwise, the compiler will see the value is dead and eliminate the computation
altogether.

In addition, in C++ we also must use a special nor() macro that invalidates the compiler’s knowledge
about the value of the loop counter; otherwise, the compiler would peek into the callee function v and
pre-compute the result of the entire loop using just one multiplication (the Go compiler knows no such
optimization—yet).

Finally, in addition to both series of 21 variants using named arguments, we also define 21 more variants
that pass the arguments to functions that accept a variable argument list:

« in Go,

//go:noinline
func fvar(args ...int) int {
val := 0
for _, a := range args {
val += a
}
return val

}

o in C++,

__attribute_ ((noinline))
long fvar(size t nargs, ...) {
va_list ap;
va_start(ap, nargs);
long val = 0;
for (size t i = 0; i < nargs; i++) {
val += va_arg(ap, long);
}
va_end(ap);
return val;

Note

This C++ code uses “traditional” C-style variable argument lists, where a single compiled func-
tion can accept different numbers of arguments from different callers.

This is different from new-style variadic template functions where each call instantiates a variant
of the function with a different number of fixed arguments.

Variadic template functions are compiled like functions with a fixed number of arguments and
thus have the same performance profile, and I will not consider them further here.

http://github.com/knz/cppbench
https://en.wikipedia.org/wiki/Variadic_template

We run all these 84 benchmarks as follows:

® cd go; make nargs_go.log

® cd cpp; make nargs_cpp.log

Then we copy the two log files into the directory of the Jupyter notebook.
The specific measurements illustrated in the rest of this document were obtained in the following
environment:

« CPU: AMD Ryzen 7 1800X 3593.33MHz Family=0x17 Model=0x1 Stepping=1
+ OS: FreeBSD 12.0-CURRENT r336756
. go version 1.10.3 freebsd/amd64

« C++ FreeBSD clang version 6.0.1 (tags/RELEASE_601/final 335540)

Data preparation

Data transformation

The benchmark results are mingled with other test outputs. Let’s extract every line starting with Benchmark
and then remove the senchmark prefix:

def load(fname):
data = [x for x in open(fname).read().split('\n') if x.startswith('Benchmark')]
data = [x[9:] for x in datal
return data

data = ['Go/' + x for x in load('nargs go.log')] + \
['Cpp/' + x for x in load('nargs cpp.log')]

print ("number of results:", len(data))

print ("example result row: %r" % data[0])

number of results: 84
example result row: 'Go/Argo 2000000000 0.28 ns/op'

Each row is composed of the benchmark name, some counter of how many times the benchmark
framework had to run the benchmark loop to stabilize the measurement, and the measurement itself.
We’ll want just the name and the numeric value of the measurement - a number of nanoseconds:
import re
r = re.compile('~(1S5+) | s+\S+\s+(15+)|s+.*")
data = [m.groups() for m in [r.match(x) for x in data] if m is not None]

print ("example result row: %r" % (datal0],))

example result row: ('Go/Arg0', '0.28")

Notice how the value part is still a Python string. This won’t do! Let’s make it a floating-point number.

data = [(x[0], float(x[1])) for x in data]
print("example result row: %r" % (datal[0],))

example result row: ('Go/Arg0', 0.28)

Data filtering / extraction

The numbers in each benchmark name will make good values for x-axes. But they are still strings at this
point. We’ll need a function that can get a x/y data series from a filter on the benchmark name.

def filterdata(pattern):
r = re.compile(pattern)
matchvals = [(r.match(x[0]), x[1]) for x in data]
xvals = [int(i[0].group(1l)) for i in matchvals if i[0] is not None]
yvals = [i[1] for i in matchvals if i[0] is not None]
return xvals, yvals

And use it to filter our data:

xgo, ygo = filterdata('Go/Arg(\d+)")
print("data series:")

print(xgo)

print(ygo)

Really the X values are the same for all series.
xvals = xgo

., ycpp = filterdata('Cpp/Arg(\d+)"')

_, ygovar = filterdata('Go/VarArg(\d+)")

_, ycppvar = filterdata('Cpp/VarArg(\d+)")

print (ycpp, ygovar, ycppvar)

data series:

[e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

[0.28, 2.53, 2.66, 2.88, 3.02, 3.14, 3.16, 3.34, 3.64, 3.89, 4.17, 4.45,
4.73, 5.06, 5.3, 5.6, 5.79, 6.06, 6.62, 7.23, 7.54]

[1.65, 1.37, 1.38, 1.38, 1.38, 1.65, 1.38, 1.65, 1.65, 1.93, 1.71, 2.01,
2.07, 2.41, 2.5, 2.82, 3.03, 3.34, 3.63, 3.98, 4.28]
[2.75, 3.34, 4.13, 5.78, 6.06, 6.62, 6.89, 7.44, 8.08,
8.53, 9.28, 9.68, 10.5, 11.e0, 11.7, 12.2, 12.7, 12.9, 13.8, 14.8, 15.1]
[2.47, 2.81, 3.59, 4.18, 5.71, 5.65, 6.51, 7.34, 8.59, 9.13, 10.2,
10.9, 12.6, 18.4, 15.8, 17.4, 18.9, 20.4, 22.1, 23.6, 25.2]

Yay!

Data analysis

We’ll use matplotiib for plotting. This needs to be initialized first:

%matplotlib inline

import matplotlib
import matplotlib.pyplot as plt

We can compare our benchmark results for the two arg and vararg functions by plotting their x- and
y-series extracted above:

plt.figure(figsize=(15, 4))

plt.subplot(1,2,1)

plt.plot(xvals, ygo, label='go named')

plt.plot(xvals, ycpp, label='c++ named')
plt.title('Latency of call')

plt.xlabel('nr of args'); plt.ylabel('total nanoseconds')
plt.legend()

plt.subplot(1,2,2)

plt.plot(xvals, ygovar, label='go varags')
plt.plot(xvals, ycppvar, label='c++ varargs')
plt.title('Latency of call')

plt.xlabel('nr of args'); plt.ylabel('total nanoseconds')
plt.legend()

plt.show()

Latency of call

— g0 named
T c++ named

total nanoseconds
Ny

oA

0.0 25 5.0 75 10.0 125 15.0 17.5 200
nr of args

What does this tell us?

« the benchmark that passes zero named arguments in Go has something funky. Indeed, if we peek
at the generated machine code, we see that the Go compiler has bypassed the function call: it was
able to peek that the function always returns zero and avoid calling it. This is why the data point is
so low.

« the Go calling convention for named arguments is about twice as slow as the C++ one. This is
expected since Go passes arguments using memory and C++ using registers..

« passing 10 arguments through a variable argument list costs about the same in C++ as in Go. How-
ever, in C++ it is about 5 times slower than 10 named arguments. In Go, it is about 2 times slower.

+ the C++ calling convention for variable argument lists is faster than Go’s until about 6 arguments,
then slower afterwards. The fact the first 6 are faster is because they are passed into registers (where
Go would use memory instead). However beyond 6 arguments, C++ uses memory too and the call
sequence is more complex than for Go.

Let’s dive deeper. What is the marginal cost of adding more arguments?
We’ll look at the data from 1 argument onwards, because the data point for zero arguments in Go is
invalid.

total nanoseconds

25 1

20 1

15 1

10 1

0.0

https://dr-knz.net/go-calling-convention-x86-64.html

xvalsm = xvals[2:]

def marginals(yvals):
return [y - yvals[i] for (i, y) in enumerate(yvals[1l:])]

ygom = marginals(ygo[1:])

ygovarm = marginals(ygovar[1l:])
ycppm = marginals(ycpp[1l:])
ycppvarm = marginals(ycppvar[1l:])

plt.figure(figsize=(15, 4))

plt.subplot(1,2,1)

plt.plot(xvalsm, ygom, label='go named')

plt.plot(xvalsm, ycppm, label='c++ named')
plt.title('Marginal latency of call')

plt.xlabel('nr of args'); plt.ylabel(',arginal nanoseconds"')
plt.legend()

plt.subplot(1,2,2)

plt.plot(xvalsm, ygovarm, label='go varags')
plt.plot(xvalsm, ycppvarm, label='c++ varargs')
plt.title('Marginal latency of call')

plt.xlabel('nr of args'); plt.ylabel(',arginal nanoseconds')
plt.legend()

plt.show()

Marginal latency of call

06 { =—— gonamed
c++ named

& 04
=
(=) o'
]
e 02
] A
o
=
= 00 A
[15]
E

=0.2 1

25 5.0 1.5 10.0 12.5 150 175 20.0
nr of args

The marginal cost of adding arguments in Go is always positive, between 0 and 0.4 nanoseconds per
argument for named arguments, and somewhere between zero and 1 nanosecond per argument for variable
argument lists. This is expected as each argument adds two memory operations and memory operations
are always computationally more expensive.

There is something strange happening in C++ though. There is no marginal cost to go from 2 to 3
arguments. This is true even though the generated machine code does contain 1 more instruction in the
caller (to prepare the argument) and 1 more in the callee (to use it).

marginal nanoseconds

Then when going from 2 to 3 there is an increase, but it is cancelled out going from 3 to 4, so that
passing 4 arguments is really as expensive as just 1. Even 6 arguments is as expensive as just 1, according
to the benchmark. And all the while the generated machine code is 6 times longer with 6 arguments than
just 1!

What is going on? To understand this, we should recall that the benchmark function executes the calls
in a loop. The “measurement per call” obtained by the framework is really the amortized mean latency;, i.e.
total measurement time over many calls, divided by the number of calls.

The salient point here is that there are many calls to the same function, with the same control path.
This enables micro-architecture optimizations of this particular CPU to kick in: branch prediction and
superscalar scheduling (multiple instructions enter the pipeline side by side) make this CPU able to process
the instructions of one call in parallel with the instructions of the next call, so they overlap in the CPU
pipeline. As a result, the benchmark time computation mistakenly determines each call’s latency to be
shorter than it really is.

The reason why this hardware optimization is available to the C++ code and not (or not as much) to
the Go code is that superscalar instruction issue is usually optimized for register-register computations,
and prevented by dependent memory accesses (i.e. when subsequent instructions use the same memory
location). Even when the micro-architecture can overlap memory accesses, the max number of in-flight
memory instructions is typically smaller than that of register-register instructions. The choice Go makes
for memory-based argument passing thus prevents Go program from benefiting fully from modern
micro-arch optimizations in hardware.

To get accurate measurements of the exact non-pipelined latency would require peeking into the CPU’s
cycle counter in between iterations of the benchmarking loop. This is readily possible in C++ (with inline
assembly and the rdtsc instruction) but I have not yet found a way to do this in Go. Because I want to keep
both sets of benchmarks equivalent, I will thus do neither here.

Summary and conclusions

On an off-the-shelf, relatively modern x86-64 implementation by AMD, the calling convention of Go makes
Go function calls perform twice slower than the equivalent C++ code.

This performance difference is caused mainly by the choice of Go to use memory to pass arguments (a
choice unlikely to be revisited any time soon, as per the discussion on a proposal to change it).

Using memory causes Go to use more machine instructions for equivalent calls, which incurs a penalty
of its own in any case. Unfortunately, using memory also prevents certain micro-architectural optimiza-
tions to kick in in the CPU hardware (in particular superscalar issue). These optimizations give an extra
boost to the machine code compiled from C++ and other languages that properly utilize register-based
argument passing.

To put these observations into context, one should keep in mind that the cost of function calls is
usually amortized by sufficient code “inside” the function. If the Go compiler is able to optimize the body
of a function just as well as a C++ compiler (a pretty big assumption, but let’s take it for the sake of this
argument), a sufficiently large function body can offset the cost of the calling sequence and erase that
particular difference between the two languages.

Furthermore, for small functions even though the body would then be insufficiently large to offset
the calling sequence, one should remember that the benchmarks considered here disable inlining by the
compiler. In real-world code, inlining is enabled and small functions are often picked for inlining. Once the
code is inlined in the caller, the call sequence is eliminated and the difference between the two languages

https://github.com/golang/go/issues/18597

can be erased again.

The situation is perhaps more “interesting” when the function body is not quite large enough to offset
the cost of the calling sequence, and the function cannot be inlined. This commonly happens with recursive
functions or dynamic dispatch (“virtual calls” in C++ / “interface calls” in Go). We will revisit these topics
in a later analysis.

Also in the series:

+ The Go low-level calling convention on x86-64

+ Measuring multiple return values in Go and C++

« Measuring errors vs. exceptions in Go and C++

+ The Go low-level calling convention on x86-64 - New in 2020 and Go 1.15

« Errors vs exceptions in Go and C++ in 2020

Copyright and licensing
Copyright © 2014-2024, Raphael ‘kena’ Poss. Permission is granted to distribute, reuse and modify this

document according to the terms of the Creative Commons Attribution-ShareAlike 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

10

https://dr-knz.net/go-calling-convention-x86-64.html
https://dr-knz.net/measuring-multiple-return-values-in-go-and-cpp.html
https://dr-knz.net/measuring-errors-vs-exceptions-in-go-and-cpp.html
https://dr-knz.net/go-calling-convention-x86-64-2020.html
https://dr-knz.net/go-errors-vs-exceptions-2020.html
http://creativecommons.org/licenses/by-sa/4.0/

	Contents
	Introduction
	Experimental setup
	Data preparation
	Data transformation
	Data filtering / extraction

	Data analysis
	Summary and conclusions
	Copyright and licensing

