Why are my Go executable files so large?

modified:

slug:
subtitle:

category:

tags:

Size visualization of Go executables using D3

Raphael ‘kena’ Poss

March 2019

2021-04-17 07:00:00
go-executable-size-visualization-with-d3

Size visualization of Go executables using D3
Programming

golang, compilers, analysis, programming languages, c++,
tooling, python, cockroachdb

Contents
Overview
Background and motivation

Building the visualization
Method
Extracting executable entries L
Decomposing Gosymbols
Decomposing C/C++symbols
Organizing the dataasatree i
Visualizationusing D3

Example visualization for a simple program
Example program
Transformation process
Interactive visualization L L L

NN N GGl s

Initial impressions

What’s inside a CockroachDB executable binary?

Visual exploration
Analysis. L
Comparison between CockroachDB versions

What’s this runtine.pctntab anyway?

Of size/performance trade-offs and use cases
Other oddities

Summary and Conclusion

Copyright and licensing

O 0 0 0 O

10
10
11
11

12

12

13

14

14

Note

The latest version of this document can be found online at https://dr-knz.net/
go-executable-size-visualization-with-d3.html. Alternate formats: Source, PDF.

Note

Erratum (2019-04-02): The increase in binary size from CockroachDB v1.0 to v19.2 is 94%/125%,
not 194%/225% as initially written. The increase in source code is 40%, not 140%. The rest of the
argument remains the same. Thanks to commenter Antonio D’souza for pointing this out.

Note
A followup analysis is also available which revisits the findings with Go 1.15/1.16, in 2021.

Overview

I built some tooling to extract details about the contents of a Go executable file, and a small D3 application
to visualize this information interactively as zoomable tree maps.

Here’s a static screenshot of how the app illustrates the size of the compiled code, in this example for
a group modules in CockroachDB:

>go - github.com/cockroachdb/cockroach/pkg/ — (11M / 35%) — Click to zoom out

storage/ server.
280k / 0.85% 250k / 0.76%

cli. ccll gossip.

240k / 0.76% 190k / 0.60% 140k /
0.43%

server/
470k [1.5%
kv. securi’ ts. tsitspl

130k / 0.40% 45k/ 45k/ 4dk/
0.14% 0.14% 0.14%

util/ keys. rpc. base sett

370k /1.1% A3k 1 0 DAY e 1
internaliclient. config. build. mig
F7L 1A SA0L A2 7 util

size | count

The reason why I built this was to help me discover and learn what makes Go executable programs
larger than I would expect. Thanks to this tool, I made several discoveries about how Go builds executable
files.

https://dr-knz.net/go-executable-size-visualization-with-d3.html
https://dr-knz.net/go-executable-size-visualization-with-d3.html
https://dr-knz.net/go-executable-size-visualization-with-d3.txt
https://dr-knz.net/go-executable-size-visualization-with-d3.pdf
{filename}go-executable-size-visualization-with-d3-2021.rst
https://en.wikipedia.org/wiki/Treemapping

AnD YoU wOnT BeLiEVe WhAt I fOuND InSiDE! (Read more below.)
The source code is public on GitHub: https://github.com/knz/go-binsize-viz

Background and motivation

My co-workers and I are busy preparing the latest release of CockroachDB, version 19.1. CockroachDB is
released as a single program executable file containing all functionality.

Today, the latest build is 123MB large, 88MB stripped. This is a 94% (resp. 125%) increase since Cock-
roachDB v1.0 was released, a bit more than two years ago. What happened?

This is especially puzzling given that:

« there is about 70MB of source code currently in CockroachDB 19.1, and there was 50MB of source
code in CockroachDB v1.0. The increase in source was just ~40%. How come did the binary size
increase by a larger factor?

« typically, compiled code is smaller than the source code it is compiled from. There is 70MB of source,
a lot of which is just comments. Yet the binary is 88MB. What makes the executable size larger than
the source code?

These questions alone made me curious.

Meanwhile, I also personally care about program size for practical reasons: smaller binaries cause
less cache thrashing. They are easier to distribute and deploy. They make container orchestration more
nimble. For these additional reasons, I would prefer if CockroachDB release binaries could become smaller.
Figuring out what they contain might suggest how to achieve that.

Building the visualization

Method

My goal was to find some clarity into 123MB of inscrutable executable data. I started without knowing
exactly how to achieve that.

I knew about the standard Unix utility nm which can display the size of individual entries in an exce-
cutable file, and I knew that Go provides its own half-baked re-implementation (go tool nm). However, even
a small program in Go will contain dozens of entries, and there were tens of thousands in the particular
files I was looking at. So I needed an overview.

I also knew about tree maps, ever since the movie Jurassic Park featured the fsn 3D browser in 1993.
This visualization represents sized hierarchical entries—for example files on disk, and in my case also like
entries inside an executable binary—using visual elements whose size on the screen is proportional to their
size in bytes on disk.

I thus decided to connect the two: visualize Go binaries using tree maps.

Furthermore, reminding myself that I have potentially tens of thousands of entries to visualize, I de-
cided upfront that it would do me no good to attempt to represent them all simultaneously on screen. I
thus went looking for zoomable tree maps.

Finally, I already had learned some D3 basics and wanted to learn more, so I decided I would use D3
for this exercise too.

https://github.com/knz/go-binsize-viz
http://www.cockroachlabs.com/
https://en.wikipedia.org/wiki/Thrashing_(computer_science)
https://en.wikipedia.org/wiki/Nm_(Unix)
https://en.wikipedia.org/wiki/Treemapping
https://en.wikipedia.org/wiki/Fsn_(file_manager)
https://d3js.org/

So I went to search for “zoomable d3 tree map” on my favorite search engine and discovered that D3
has native supports for tree maps, provided some input data in a suitable format.

I initially started to tinker with Mike Bostok’s zoomable treemaps but then quickly ran into some
issue where some D3 feature I wanted to use was not available: Mike’s code uses D3 V3, “modern” D3
runs at V5, and there were major API changes between V3 and V4. Converting the V3 example to V4 (or
even V5) seemed non-trivial. Instead I set out to find some examples built for V4+. I then discovered this
example from Jahnichen Jacques, itself inspired from Mike Bostok’s, and finally this simpler example from
Guglielmo Celata inspired from both but with a simpler implementation.

All these examples worked using D3 hierarchical data sets loaded from CSV or JSON with a particular
schema.

The main thinking exercise was thus to massage the output of nn into a format suitable to load into D3.
The rest of the work was simpler, to adapt D3 examples I found online into something that made sense for
the type of data I was working with.

Extracting executable entries

A Go executable binaries contains, as per go tool nm -size, two types of entries:

« entries compiled from Go. These look like this:

1l0ddace 17 t github.com/cockroachdb/cockroach/pkg/base. (*ClusterIDContainer).Unlock

« entries compiled from C/C++ via cgo, or linked into the Go program from external C/C++ libraries.
These look like this (modulo filtering using c++fitt):

28404a0 44 T rocksdb: :PosixDirectory::~PosixDirectory()

The first column is the address, and is of no interest here. The second column is the size. The third
column is the entry type, and of no interest here either. The last part is the symbol for the entry.

To build a tree visualization we thus need to decompose each symbol into name components that group
the symbols into a hierarchy.

Decomposing Go symbols

Intuitively, a Go symbol contains a hierarchical package path (e.g. github.con/1ib/pg) and some package-local
name. The package-name name is either global in the package (e.g. main), or a method name with some
receiver type prefix (e.g. (*File).write).

This model accurately describes a large majority of symbols, and can be readily decomposed using a
simple regular expression. However, we quickly come across exotic names that do not fit this model:

5250978 13 d crypto/tls..gobytes.1

3823b40 48 r go.itab.*compress/flate.bylLiteral,sort.Interface
aa3740 113 t go.(*struct { io.Reader; io.Closer }).Close
e79chb0 10 t database/sql.glob..funcl
8ce580 123 t encoding/json.floatEncoder.encode-fm
73aedo 82 t runtime.gcMarkDone.funcl.1l

I'thus iterated to expand a simple regular expression to properly decompose the variety of names found
in Go binaries. The result was a bit gnarly can be found here.
For the examples above, my program produces the following:

https://bost.ocks.org/mike/treemap/
http://bl.ocks.org/JacquesJahnichen/42afd0cde7cbf72ecb81
http://bl.ocks.org/JacquesJahnichen/42afd0cde7cbf72ecb81
http://bl.ocks.org/guglielmo/16d880a6615da7f502116220cb551498
http://bl.ocks.org/guglielmo/16d880a6615da7f502116220cb551498
https://github.com/knz/go-binsize-viz/blob/d9d15ccf1569747ac4f2ff643a56954c793ce56c/tab2pydic.py#L119-L184

Size
13
48
113
10
123
82

Path Name

['crypto/', 'tls.', '.gobytes.'] 1

['compress/', 'flate.'] go.itab.*byLiteral,sort.Interface
['go.', '(*struct { io.Reader; io.Closer }).'] Close

['database/', 'sql.', 'glob..'] funcl

['encoding/', 'json.', 'floatEncoder.'] encode-fm

['runtime/', 'gcMarkDone.', 'funcl.'] 1

Decomposing C/C++ symbols

Intuitively, a C/C++ symbol contains a hierarchical namespace path (e.g. std:: or google: :protobuf::) and then
a variable or function name.

Again, looking at real-world binaries, we easily find many items that don’t fit the simple model:

37eeldd 8 r $f64.c05eb8bf2d05ba25

26abe20 100 T void rocksdb::JSONWriter::AddValue<int>(int const&)
283880 71 t rocksdb: : (anonymous namespace)::PosixEnv::NowNanos()
2821ae0 231 T rocksdb: :NumberToString[abi:cxx11] (unsigned long)

5b8c5¢ 34 t rocksdb::PosixRandomRWFile::Sync() [clone .cold.88]
265a740 211 T google::protobuf::internal::LogMessage: :operator<<(long)

Using the same technique, I iterated from a simple regular expression to decompose the variety of
symbols encountered. I even went one step further and chose to decompose identifiers at underscore
boundaries. The result regular expressions are again rather complex and can be found here.

For the examples above, my program produces the following:

Size
8
100
71
231
211

Path
['$f64."]
['rocksdb::'
['rocksdb::'
['rocksdb::'

['google:: ',

’

’

’

'JSONWriter::']
' (anonymous namespace)::', 'PosixEnv::']
'PosixRandomRWFile:: ']

'protobuf::', ‘'internal::', 'LogMessage::']

Name

c05eb8bf2d05ba25

void AddValue<int>(int const&)
NowNanos ()

Sync() [clone .cold.88]

operator<<(long)

Some difficulty arises from the fact that C++ symbols can contain an arbitrarily amount of nested
template parameters or parentheses in types, and regular expressions cannot match recursively.

My current implementation is thus restricted to only supports 6 levels of nesting. This appears to be
insufficient to capture all symbols in my program of interest (where some symbols contain 10+ levels of
nesting!) but I chose to exclude a few symbols to keep my regular expression simple(r). In my target
analysis, the size of these excluded symbols is negligible anyway.

Organizing the data as a tree

After decomposing the path components of each symbol, my program creates nested Python dictionaries
using a simple recursive function.

However, the result of this strategy for the path a,b,c is something like this:

{'children':{

https://github.com/knz/go-binsize-viz/blob/d9d15ccf1569747ac4f2ff643a56954c793ce56c/tab2pydic.py#L7-L117
https://github.com/knz/go-binsize-viz/blob/d9d15ccf1569747ac4f2ff643a56954c793ce56c/tab2pydic.py#L194-L211
https://github.com/knz/go-binsize-viz/blob/d9d15ccf1569747ac4f2ff643a56954c793ce56c/tab2pydic.py#L194-L211

'a':{'children':{
'b':{'children':{
o'yl
1
1}
13

Whereas the D3 visualization code really wants this:

{'children':[
{'name':'a', 'children':[
{'name':'b', 'children':[
{'name':'c', ... }

1}

1}

For this, I built a separate simplification program that turns the former format into the latter.

The reason why I separated the code into two programs is that the decomposition of symbols is rather
expensive, and once I was satisfied with the decomposition I wanted the ability to iterate quickly on the
tree transform without having to decompose over and over again.

Additionally, the simplification program collapses (“flattens”) multiple hierarchy levels with a single
child into just one level with a combined name. For example, the hierarchy a/ - b/ - ¢/ - x,y becomes a/b/c/
- X,Y.

Visualization using D3

The original D3 tree map example as initially designed by Mike Bostok, and modified by Jahnichen Jacques
and Guglielmo Celata operates thus:

1. it prepares a SVG canvas in a named HTML “chart” entity;

2. it defines a display function which, given a computed D3 tree map layout, creates a 3-level (grandparent-
parent-child) visualization in the SVG;

3. the display function internally defines transition logic to zoom in and out when clicking on the
canvas;

4. it loads the data from JSON, attaches it to a D3 tree map layout, and renders it using the aforemen-
tioned facilities.

On top of this logic by the previous authors, I added the following:
» displaying sizes using both absolute values and as percentages;
+ a stable color map;

« the ability to switch betwen visualization of sizes and visualization of counts;

« the ability to view multiple data sets inside the same web page.

https://github.com/knz/go-binsize-viz/blob/d9d15ccf1569747ac4f2ff643a56954c793ce56c/simplify.py
https://github.com/knz/go-binsize-viz/blob/d9d15ccf1569747ac4f2ff643a56954c793ce56c/app3.js#L46-L53
https://github.com/knz/go-binsize-viz/blob/d9d15ccf1569747ac4f2ff643a56954c793ce56c/app3.js#L69-L166
https://github.com/knz/go-binsize-viz/blob/d9d15ccf1569747ac4f2ff643a56954c793ce56c/app3.js#L123-L163
https://github.com/knz/go-binsize-viz/blob/d9d15ccf1569747ac4f2ff643a56954c793ce56c/app3.js#L256
https://github.com/knz/go-binsize-viz/blob/d9d15ccf1569747ac4f2ff643a56954c793ce56c/app3.js#L252
https://github.com/knz/go-binsize-viz/blob/d9d15ccf1569747ac4f2ff643a56954c793ce56c/app3.js#L253
https://github.com/knz/go-binsize-viz/blob/d9d15ccf1569747ac4f2ff643a56954c793ce56c/app3.js#L22-L25
https://github.com/knz/go-binsize-viz/blob/d9d15ccf1569747ac4f2ff643a56954c793ce56c/app3.js#L241-L249
https://github.com/knz/go-binsize-viz/blob/d9d15ccf1569747ac4f2ff643a56954c793ce56c/app3.js#L264-L277
https://github.com/knz/go-binsize-viz/blob/d9d15ccf1569747ac4f2ff643a56954c793ce56c/cockroach_sizes.html#L32-L40

Example visualization for a simple program

Example program
We'll use the following Go code:

package main
import "fmt"
var x = struct { x [10000]int }{}

func main() {
fmt.Println("hello world", x)

I choose to use a large struct for variable x so that the main package becomes significant in size compared
to the imported runtime objects.
The program can be compiled as usual:

$ go build hello.go

Transformation process
I then use the following commands:

$ go tool nm -size hello >hello.symtab
$ python3 tab2pydic.py hello.symtab >hellodic.py
$ python3 simplify.py hellodic.py >hello.js

Interactive visualization

The following HTML code is sufficient:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" type="text/css" href="treemap.css">
</head>
<body>
<p class="chart" id="chart"></p>
<script src="js/d3.v4.min.js" type="text/javascript"></script>
<script src="js/d3-color.vl.min.js"></script>
<script src="js/d3-interpolate.vl.min.js"></script>
<script src="js/d3-scale-chromatic.vl.min.js"></script>
<script src="app3.js" type="text/javascript"></script>
<script type="text/javascript">
viewTree("chart", "example-data/hello.js");
</script>
</body>
</html>

Which renders as follows (ensure Javascript is enabled):

>go + — (1.3M / 100%) — Click to zoom out

main. unicode.
80k / 6.3% 77k [6.1%

reflect.

72k / 5.7%

Although this simple executable file appears to only contain Go symbols, it actually does contain C/C++
symbols too. However, their size is negligible and they initially appear as a mere line on the right side of
the tree map. By clicking on that line, you may be able to zoom into them and obtain this:

>c/c++ - — (3.2k / 0.26%) — Click to zoom out

Initial impressions

The small programm above contains 6 lines of source code and compiles to a 1.3MB binary. The breakdown
of sizes is as follows:

Package
runtime
main
unicode
reflect
fmt
strconv
sync
internal
syscall
(others)

Size
900K / 71%
80K / 6.3%
77K/ 6.1%
72K / 5.7%
38K/ 3.0%
31K/ 2.5%
10K / 0.8%
9K /0.7%
6K /0.5%
(remainder)

In addition to code compiled from source, 24K (1.9% of size) are compiler-generated type equality and
hashing functions. These are accumulated in the box TYPEINFO in the tree map.

The following becomes clear quickly:

« the Go standard library is not well modularized; importing just one function (fmt.printin) pulls in

about 300KB of code.

« even accounting for fmt.printin and its dependencies and the 80K of predictable code from the main
program, we are still left to wonder about 900K (71%) of code from the runtime package.

« Zooming into there, we see that 450K (35%) are taken by just one single entry with name runtime.pcintab.
This is more than the code for the main program and all the supporting code for fmt.printin combined.

We’ll come back to this below.

What’s inside a CockroachDB executable binary?

Visual exploration

Applying the tool on a recent CockroachDB build, one can find the following:

10

> — (71M / 100%) — Click inside square to zoom in

Analysis

By exploring this visualization, we discover:
« 71M of total entries;
« 8.4M (12% of size) in C/C++ entries, including 3M (4.3%) from RocksDB;
« 62M (88%) in Go entries, including:

— 32M (45%) compiled directly from CockroachDB source code or its dependencies;
— 26M (36%) from the runtime package.

... wait, what?

We established above, in the simple example, that runtine was about 900K in size. Now it has become
26M—a 28X increase! What is going on?

Zooming in, the mystery is revealed: all of the increase went into that single object runtime.pcintab. The
other entries in package runtime do not appear to differ between programs.

We will come back to this pcintab object later below.

Comparison between CockroachDB versions

The visualization above was for a pre-release build of CockroachDB v19.1. For reference, here is the data
for CockroachDB v1.0:
This has:

« 32M of total entries;

« 2.5M (7.8%) in C/C++ entries, including 1.5M (4.7%) from RocksDB;

11

+ 30M (92%) in Go entries, including:

— 16M (50%) compiled from CockroachDB sources and dependencies;
- 7.9M (25%) from the runtime package, of which 7.3M (23%) comes directly from pctntab.

Recalling the initial problem statement, CockroachDB increased about 40% in source code size between
v1.0 and v19.1. Thanks to the visualization, we observe that the compiled code that directly originates from
the CockroachDB sources increased from 16M to 32MB, which is about a 100% increase.

Meanwhile, runtime.pcintab increased from 7.9M to 26M—a 230% increase!

What’s thls runtime.pclntab anywaY?
It is not too well documented however this comment from the Go source code suggests its purpose:
// A LineTable is a data structure mapping program counters to line numbers.

The purpose of this data structure is to enable the Go runtime system to produce descriptive stack
traces upon a crash or upon internal requests via the runtime.Getstack APL

So it seems useful. But why is it so large?

The URL https://golang.org/s/go12symtab hidden in the aforelinked source file redirects to a document
that explains what happened between Go 1.0 and 1.2. To paraphrase:

« prior to 1.2, the Go linker was emitting a compressed line table, and the program would decompress
it upon initialization at run-time.

« in Go 1.2, a decision was made to pre-expand the line table in the executable file into its final format
suitable for direct use at run-time, without an additional decompression step.

In other words, the Go team decided to make executable files larger to save up on initialization time.

Also, looking at the data structure, it appears that its overall size in compiled binaries is super-linear
in the number of functions in the program, in addition to how large each function is. We will come back
to this below.

Of size/performance trade-offs and use cases

The change in design between Go pre-1.2 and go 1.2 is a classic trade-off between performance (time) and
memory (space).
When is this trade-off warranted?

« if a program is executed often (e.g. microservice, system tools), then it is worth accelerating its start-
up time at the cost of an increase in size.

If, moreover, the program is small, with relatively few functions, (a reasonable assumption for pro-
grams executed often, like microservices or system tools), the increase in size incurred by runtime.pctntab
will be negligible and thus have no significant impact on usability: file transfers, deployments, or-
chestration, etc.

In that case, the Go 1.2 design is sound and warranted.

12

https://golang.org/src/debug/gosym/pclntab.go
https://golang.org/s/go12symtab

« if, in contrast, a program is executed rarely (e.g. a system service that runs continuously in the
background, like, say ... a database server), then the start-up time can be amortized throughout the
lifetime of the process. The performance benefit of accelerating start-up is then not so clear.

If, moreover, the program is large, with tens of thousands of of functions (a reasonable assumption
for complex, feature-driven enterprise software like ... database servers), the increase in size incurred
by runtime.pcintab becomes inconveniently significant.

This makes the Go 1.2 design ... not so advantageous.

In the case of CockroachDB, runtime.pcintab could soon exceed the entirety of code compiled from sources,
even with a conservative assumption of linear growth in compiled code size:

Year 2017 2019 2021 (projected) 2023

Total size 32M 71IM 157M 350M

CockroachDB code 16M (50%) 32M (45%) 64M (41%) 128M (37%)

runtine . pclntab 7.3M (23%) 26M (36%) 85M (54%) 281M (80%)
Other oddities

« the Go compiler and linker always produce and keep the following entries, even when they are only
used in functions elided by the linker because they are not used:

- Go interface conversion tables (go.itab.) between every pair of interface ever mentioned in
the source code.
This accounts for about 1% of the CockroachDB 19.1 binary, and is predicted to increase
with the introduction of more inter-component interfaces for testing in 19.2.

— Type equality and hashing functions (type..).

This accounts for about 1.2% of the CockroachDB 19.1 binary, and is predicted to
increase with the increasing use of code generation for optimizations inside Cock-
roachDB 19.2.

+ as discussed in my previous article, Go uses memory instead of registers to pass arguments and re-
turn values across function calls. On x86/x86-64, memory-accessing instructions use longer machine
encodings than register-only instructions.

In my experience, this is specifically the inflection point for the ratio between source code size
and compiled code size in a monomorphic C-like language: when targeting fixed-length instruction
encodings and/or a memory-heavy calling convention, the size of the compiled code grows larger
than the source code (excluding comments and whitespace). We can see this with both C on ARMvé6
(no Thumb) or Go on x86(-64).

When targeting variable-length instruction encodings and the calling convention suitably utilizes
the more compact instructions, the size of the compiled code becomes smaller than the source code.
We can see this with C on x86(-64) with a decent compiler, but, as examined here, not with Go.

13

https://dr-knz.net/go-calling-convention-x86-64.html

Summary and Conclusion

To understand the internal structure of executable files compiled from Go, I built a D3 visualization using
zoomable tree maps. This visualization is published on GitHub and has been tested to work with any
executable produced by Go versions between 1.4 and 1.12.

Using this tool, I have analyzed the space usage inside the monolithic CockroachDB binary, cockroach. I
discovered that the majority of the growth of cockroach over time is concentrated in one object, runtime.pctntab.

This object is automatically generated by the Go compiler to support the generation of textual stack
traces at run-time, for example in error reports.

A design choice made in Go 1.2 causes this object to grow super-linearly in the number of functions
in a program, in addition to the sum of their sizes. Between CockroachDB 1.0 and 19.1, runtime.pclntab grew
by 230% while the total amount of source code only increased by 40% and compiled code by 100%.

This design choice was intended to lower the start-up time of programs, and contrasts with the previous
design using compressed tables—which is, incidentally, the industry standard for other C-like languages,
even in contemporary compilers. This performance goal is not relevant to server software with long-
running processes, like CockroachDB, and its incurred space cost is particularly inconvenient for large,
feature-rich programs.

Note
In 2021, the situation is slightly different but arguably worse. Read the followup analysis for

more details.

Copyright and licensing

Copyright © 2014-2021, Raphael ‘kena’ Poss. Permission is granted to distribute, reuse and modify this
document according to the terms of the Creative Commons Attribution-ShareAlike 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

14

https://en.wikipedia.org/wiki/Treemapping
https://github.com/knz/go-binsize-viz
http://www.cockroachlabs.com/
{filename}go-executable-size-visualization-with-d3-2021.rst
http://creativecommons.org/licenses/by-sa/4.0/

	Contents
	Overview
	Background and motivation
	Building the visualization
	Method
	Extracting executable entries
	Decomposing Go symbols
	Decomposing C/C++ symbols

	Organizing the data as a tree
	Visualization using D3

	Example visualization for a simple program
	Example program
	Transformation process
	Interactive visualization
	Initial impressions

	What's inside a CockroachDB executable binary?
	Visual exploration
	Analysis
	Comparison between CockroachDB versions

	What's this runtime.pclntab anyway?
	Of size/performance trade-offs and use cases
	Other oddities
	Summary and Conclusion
	Copyright and licensing

