
The Go low-level calling convention on x86-64

Raphael ‘kena’ Poss

July 2018

modified: 2018-09-03
slug: go-calling-convention-x86-64
category: Programming
tags: golang, compilers, analysis, programming languages, c++
series: Go low-level code analysis

Contents

Introduction 2

Argument and return values, call sequence 2
Arguments and return value . 2
Call sequence: how a function gets called . 4
Aside: exceptions in C/C++ . 6
Callee-save registers—or not . 6

The cost of pointers and interfaces 7
Pointers use just one word . 7
Interfaces use two words . 8
Strings and slices use two and three words . 8
Constructing interface values . 9
Interfaces for empty structs . 11

error is an interface type 12
Common case: computed errors . 13
Common case: testing for errors . 14

Implementation of defer 15
Deferred closures . 16

Implementation of panic 18
Using panic() in a function . 18
Exceptions for intermediate functions . 19

1

Catching exceptions: defer + recover 19
Low-level mechanism . 19
Cost of defer + recover . 20

An interesting question: error vs panic? 21

Differences with gccgo 22

Summary of observations 24

Further reading 24

Copyright and licensing 25

Note
The latest version of this document can be found online at https://dr-knz.net/
go-calling-convention-x86-64.html. Alternate formats: Source, PDF.

Introduction

This article analyzes how the Go compiler generates code for function calls, argument passing and excep-
tion handling on x86-64 targets.

This expressely does not analyze how the Go compiler lays out data in memory (other than function ar-
guments and return values), how escape analysis works, what the code generator must do to accommodate
the asynchronous garbage collector, and how the handling of goroutines impacts code generation.

All tests below are performed using the freebsd/amd64 target of go 1.10.3. The assembly listing are pro-
duced with go tool objdump and use the Go assembler syntax.

Note
A followup analysis is also available which revisits the findings with Go 1.15. Spoiler alert: only
few things have changed. The 2018 findings remain largely valid.

Argument and return values, call sequence

Arguments and return value

How does Go pass arguments to function and return results?
Let us look at the simplest function:

func EmptyFunc() { }

This compiles to:

EmptyFunc:
0 x480630 c3 RET

Now, with a return value:

2

https://dr-knz.net/go-calling-convention-x86-64.html
https://dr-knz.net/go-calling-convention-x86-64.html
https://dr-knz.net/go-calling-convention-x86-64.txt
https://dr-knz.net/go-calling-convention-x86-64.pdf
https://golang.org/doc/asm
{filename}go-calling-convention-x86-64-2020.rst

func FuncConst() int { return 123 }

This compiles to:

FuncConst:
0 x480630 48c74424087b000000 MOVQ $0x7b, 0x8(SP)

0 x480639 c3 RET

So return values are passed via memory, on the stack, not in registers like in most standard x86-64
calling conventions for natively compiled languages.

Compare the output from a C or C++ compiler:

FuncConst:
movl $123, %eax
retq

This passes the return value in a register.
How do simple arguments get passed in Go?

// Note: substracting z so we know which argument is which.
func FuncAdd(x,y,z int) int { return x + y - z }

This compiles to:

FuncAdd:
0 x480630 488b442408 MOVQ 0x8(SP), AX ; get arg x

0 x480635 488b4c2410 MOVQ 0x10(SP), CX ; get arg y

0 x48063a 4801c8 ADDQ CX, AX ; %ax <- x + y

0 x48063d 488b4c2418 MOVQ 0x18(SP), CX ; get arg z

0 x480642 4801c8 SUBQ CX, AX ; %ax <- x + y - z

0 x480645 4889442420 MOVQ AX, 0x20(SP) ; return x+y-z

0 x48064a c3 RET

So arguments are passed via memory, on the stack, not in registers like other languages.
Also we see the arguments are at the top of the stack, and the return value slot underneath that.
Compare the output from a C or C++ compiler:

FuncAdd:
leal (%rdi,%rsi), %eax
subl %edx, %eax
retq

This passes the arguments in registers. The exact number depends on the calling convention, but for
freebsd/amd64 up to 6 arguments are passed in registers, the rest on the stack.

Note that there is an open proposal to implement register passing in Go at https://github.com/golang/
go/issues/18597. This proposal has not yet been accepted.

3

https://en.wikipedia.org/wiki/X86_calling_conventions
https://en.wikipedia.org/wiki/X86_calling_conventions
https://github.com/golang/go/issues/18597
https://github.com/golang/go/issues/18597

Call sequence: how a function gets called

How does a function like FuncAdd above get called?

func DoCallAdd() int { return FuncAdd(1, 2, 3) }

This gives:

0 x480650 64488b0c25f8ffffff MOVQ FS:0xfffffff8, CX

0 x480659 483b6110 CMPQ 0x10(CX), SP

0 x48065d 7641 JBE 0x4806a0

0 x48065f 4883ec28 SUBQ $0x28, SP

0 x480663 48896c2420 MOVQ BP, 0x20(SP)

0 x480668 488d6c2420 LEAQ 0x20(SP), BP

0 x48066d 48c7042401000000 MOVQ $0x1, 0(SP)

0 x480675 48c744240802000000 MOVQ $0x2, 0x8(SP)

0 x48067e 48c744241003000000 MOVQ $0x3, 0x10(SP)

0 x480687 e8a4ffffff CALL src.FuncAdd(SB)

0 x48068c 488b442418 MOVQ 0x18(SP), AX

0 x480691 4889442430 MOVQ AX, 0x30(SP)

0 x480696 488b6c2420 MOVQ 0x20(SP), BP

0 x48069b 4883c428 ADDQ $0x28, SP

0 x48069f c3 RET

0 x4806a0 e80ba5fcff CALL runtime.morestack_noctxt(SB)

0 x4806a5 eba9 JMP src.DoCallAdd(SB)

Woah, what is going on?
At the center of the function we see what we wanted to see:

0 x48066d 48c7042401000000 MOVQ $0x1, 0(SP) ; set arg x

0 x480675 48c744240802000000 MOVQ $0x2, 0x8(SP) ; set arg y

0 x48067e 48c744241003000000 MOVQ $0x3, 0x10(SP) ; set arg z

0 x480687 e8a4ffffff CALL src.FuncAdd(SB) ; call

0 x48068c 488b442418 MOVQ 0x18(SP), AX ; get return value of FuncAdd

0 x480691 4889442430 MOVQ AX, 0x30(SP) ; set return value of DoCallAdd

The arguments are pushed into the stack before the call, and after the call the return value is retrieved
from the callee frame and copied to the caller frame. So far, so good.

However, now we know that arguments are passed on the stack, this means that any function that
calls other functions now must ensure there is some stack space to pass arguments to its callees. This is
what we see here:

; Before the call: make space for callee.
0 x48065f 4883ec28 SUBQ $0x28, SP
; After the call: restore stack pointer.
0 x48069b 4883c428 ADDQ $0x28, SP

Now, what is the remaining stuf?
Because Go has exceptions (“panics”) it must preserve the ability of the runtime system to unwind the

stack. So in every activation record it must store the difference between the stack pointer on entry and
the stack pointer for callees. This is the “frame pointer” which is stored in this calling convention in the
BP register. That is why we see:

4

; Store the frame pointer of the caller into a known location in
; the current activation record.
0 x480663 48896c2420 MOVQ BP, 0x20(SP)
; Store the address of the copy of the parent frame pointer
; into the new frame pointer.
0 x480668 488d6c2420 LEAQ 0x20(SP), BP

This maintains the invariant of the calling convention that BP always points to a linked list of frame
pointers, where each successive value of BP is 32 bytes beyond the value of the stack pointer in the current
frame (SP+0x20). This way the stack can always be successfully unwound.

Finally, what about the last bit of code?
0 x480650 64488b0c25f8ffffff MOVQ FS:0xfffffff8, CX

0 x480659 483b6110 CMPQ 0x10(CX), SP

0 x48065d 7641 JBE 0x4806a0
...
0 x4806a0 e80ba5fcff CALL runtime.morestack_noctxt(SB)

0 x4806a5 eba9 JMP src.DoCallAdd(SB)

The Go runtime implements “tiny stacks” as an optimization: a goroutine always starts with a very
small stack so that a running go program can have many “small” goroutines active at the same time. How-
ever that means that on the standard tiny stack it is not really possible to call many functions recursively.

Therefore, in Go, every function that needs an activation record on the stack needs first to check
whether the current goroutine stack is large enough for this. It does this by comparing the current value of
the stack pointer to the low water mark of the current goroutine, stored at offset 16 (0x10) of the goroutine
struct, which itself can always be found at address FS:0xfffffff8.

Compare how DoCallAdd works in C or C++:
DoCallAdd:

movl $3, %edx
movl $2, %esi
movl $1, %edi
jmp FuncAdd

This passes the arguments in registers, then transfers control to the callee with a jmp — a tail call. This
is valid because the return value of FuncAdd becomes the return value of DoCallAdd.

What of the stack pointer? The function DoCallAdd cannot tell us much in C because, in contrast to Go,
it does not have any variables on the stack and thus does need an activation record. In general (and that
is valid for Go too), if there is no need for an activation record, there is no need to set up / adjust the stack
pointer.

So how would a C/C++ compiler handle an activation record? We can force one like this:
void other(int *x);
int DoCallAddX() { int x = 123; other(&x); return x; }

Gives us:
DoCallAddX:

subq $24, %rsp ; make space
leaq 12(%rsp), %rdi ; allocate x at address rsp+12
movl $123, 12(%rsp) ; store 123 into x
call other ; call other(&x)
movl 12(%rsp), %eax ; load value from x
addq $24, %rsp ; restore stack pointer
ret

So %rsp gets adjusted upon function entry and restored in the epilogue.
No surprise. But is there? What of exception handling?

5

Aside: exceptions in C/C++

The assembly above was generated with a C/C++ compiler that does support exceptions. In general, the
compiler cannot assume that a callee won’t throw an exception. Yet we did not see anything about saving
the stack pointer and/or setting up a frame pointer in the generated code above. So how does the C/C++
runtime handle stack unwinding?

There are fundamentally two main ways to implement exception propagation in an ABI (Application
Binary Interface):

• “dynamic registration”, with frame pointers in each activation record, organized as a linked list. This
makes stack unwinding fast at the expense of having to set up the frame pointer in each function
that calls other functions. This is also simpler to implement.

• “table-driven”, where the compiler and assembler create data structures alongside the program code
to indicate which addresses of code correspond to which sizes of activation records. This is called
“Call Frame Information” (CFI) data in e.g. the GNU tool chain. When an exception is generated, the
data in this table is loaded to determine how to unwind. This makes exception propagation slower
but the general case faster.

In general, a language where exceptions are common and used for control flow will adopt dynamic
registration, whereas a language where exceptions are rare will adopt table-driven unwinding to ensure
the common case is more efficient. The latter choice is extremely common for C/C++ compilers.

Interestingly, the Go language designers recommend against using exceptions (“panics”) for control
flow, so one would expect they expect their language to fall in the second category and ought to also
implement table-driven unwinding. Yet the Go compiler still uses dynamic registration. Maybe the table-
driven approach was not used because it is more complex to implement?

More reading:

• JL Schilling - Optimizing away C++ exception handling - ACM SIGPLAN Notices, 1998

Callee-save registers—or not

Are there callee-save registers in Go? Can theGo compiler expect the calleewill avoid using some registers,
i.e. they won’t be clobbered unless strictly needed?

In other languages, this optimization enables a function that calls another function to keep “important”
values in registers and avoid to push its temporary variables to the stack (and thus force the apparition of
an activation record on the stack).

Let’s try:

func Intermediate() int {
x := Other()
x += Other()
return x

}

Is there a callee-save register for the Go compiler to store x in?
Let’s check:

6

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.8337&rep=rep1&type=pdf

Intermediate:
[...]

0 x4806dd e8ceffffff CALL src.Other(SB)

0 x4806e2 488b0424 MOVQ 0(SP), AX

0 x4806e6 4889442408 MOVQ AX, 0x8(SP)

0 x4806eb e8c0ffffff CALL src.Other(SB)

0 x4806f0 488b442408 MOVQ 0x8(SP), AX

0 x4806f5 48030424 ADDQ 0(SP), AX

0 x4806f9 4889442420 MOVQ AX, 0x20(SP)

[...]

So, no. The Go compiler always spills the temporaries to the stack during calls.
What does the C/C++ compiler do for this? Let’s see:

Intermediate:
pushq %rbx ; save %rbx from caller
xorl %eax, %eax
call other
movl %eax, %ebx ; use callee-save for intermediate result
xorl %eax, %eax
call other
addl %ebx, %eax ; use callee-save again
popq %rbx ; restore callee-save for caller
ret

Most C/C++ calling convention have a number of callee-save registers for intermediate results. On
this platform, this includes at least %rbx.

The cost of pointers and interfaces

Go implements both pointer types (e.g. *int) and interface types with vtables (comparable to classes con-
taining virtual methods in C++).

How are they implemented in the calling convention?

Pointers use just one word

Looking at the following code:

func UsePtr(x *int) int { return *x }

The generated code:

UsePtr:
0 x480630 488b442408 MOVQ 0x8(SP), AX ; load x

0 x480635 488b00 MOVQ 0(AX), AX ; load *x

0 x480638 4889442410 MOVQ AX, 0x10(SP) ; return *x

0 x48063d c3 RET

So a pointer is the same size as an int and uses just one word slot in the argument struct. Ditto for
return values:

var x int
func RetPtr() *int { return &x }
func NilPtr() *int { return nil }

7

This gives us:
RetPtr:

0 x480650 488d0581010c00 LEAQ src.x(SB), AX ; compute &x

0 x480657 4889442408 MOVQ AX, 0x8(SP) ; return &x

0 x48065c c3 RET
NilPtr:

0 x480660 48c744240800000000 MOVQ $0x0, 0x8(SP) ; return 0

0 x480669 c3 RET

Interfaces use two words

Considering the following code:
type Foo interface{ foo() }
func InterfaceNil() Foo { return nil }

The compiler generates the following:
InterfaceNil:

0 x4805b0 0f57c0 XORPS X0, X0

0 x4805b3 0f11442408 MOVUPS X0, 0x8(SP)

0 x4805b8 c3 RET

So an interface value is bigger. The pseudo-register X0 in the Go pseudo-assembly is really the x86 %xmm0,
a full 16-byte (128 bit) register.

We can confirm that by looking at a function that simply forwards an interface argument as a return
value:

func InterfacePass(Foo x) Foo { return x }

This gives us:
InterfacePass:

0 x4805b0 488b442408 MOVQ 0x8(SP), AX

0 x4805b5 4889442418 MOVQ AX, 0x18(SP)

0 x4805ba 488b442410 MOVQ 0x10(SP), AX

0 x4805bf 4889442420 MOVQ AX, 0x20(SP)

0 x4805c4 c3 RET

Although there is just 1 argument and return value, the compiler has to copy two words. Interface
“values” are really a pointer to a vtable and a value combined together.

Strings and slices use two and three words

Next to pointers (one word) and interface values (two words) the Go compiler also has special layouts for
two other things:

• the special type string is implemented as two words: a word containing the length, and a word to the
start of the string. This supports computing len() and slicing in constant time.

• all slice types ([]T) are implemented using 3 words: a length, a capacity and a pointer to the first
element. This supports computing len(), cap() and slicing in constant time.

The reason why string values do not need a capacity is that string is an immutable type in Go.

8

Constructing interface values

Note
The information in this section was collected with Go 1.10. It remains largely unchanged in Go
1.15. The minor differences are reviewed in this followup analysis.

Constructing a non-nil interface value requires storing the vtable pointer alongside the value.
In most real world cases the vtable part is known statically (because the type being cast to the interface

type is known statically). We’ll ignore the conversions from one interface type to another here.
For the value part, Go has multiple implementation strategies based on the actual type of value.
The most common case, an interface implemented by a pointer type, looks like this:

// Define the interface.
type Foo interface{ foo() }
// Define a struct type implementing the interface by pointer.
type foo struct{ x int }
func (*foo) foo() {}
// Define a global variable so we don't use the heap allocator.
var x foo

// Make an interface value.
func MakeInterface1() Foo { return &x }

This gives us:

MakeInterface1:
0 x4805c0 488d05d9010400 LEAQ go.itab.*src.foo,src.Foo(SB), AX

0 x4805c7 4889442408 MOVQ AX, 0x8(SP)

0 x4805cc 488d0505f20b00 LEAQ src.x(SB), AX

0 x4805d3 4889442410 MOVQ AX, 0x10(SP)

0 x4805d8 c3 RET

Just as predicted: address of vtable in the first word, pointer to the struct in the second word. No
surprise.

Things become a bit more expensive if the struct implements the interface by value:

// Define a struct type implementing the interface by value.
type bar struct{ x int }
func (bar) foo() {}
// Define a global variable so we don't use the heap allocator.
var y bar

// Make an interface value.
func MakeInterface2() Foo { return y }

This gives us:

MakeInterface2:
0 x4805c0 64488b0c25f8ffffff MOVQ FS:0xfffffff8, CX

0 x4805c9 483b6110 CMPQ 0x10(CX), SP

0 x4805cd 7648 JBE 0x480617

0 x4805cf 4883ec28 SUBQ $0x28, SP

0 x4805d3 48896c2420 MOVQ BP, 0x20(SP)

0 x4805d8 488d6c2420 LEAQ 0x20(SP), BP

0 x4805dd 488d053c020400 LEAQ go.itab.src.bar,src.Foo(SB), AX

9

https://dr-knz.net/go-calling-convention-x86-64-2020.html#the-cost-of-pointers-and-interfaces

0 x4805e4 48890424 MOVQ AX, 0(SP)

0 x4805e8 488d05e9f10b00 LEAQ src.x(SB), AX

0 x4805ef 4889442408 MOVQ AX, 0x8(SP)

0 x4805f4 e8e7b2f8ff CALL runtime.convT2I64(SB)

0 x4805f9 488b442410 MOVQ 0x10(SP), AX

0 x4805fe 488b4c2418 MOVQ 0x18(SP), CX

0 x480603 4889442430 MOVQ AX, 0x30(SP)

0 x480608 48894c2438 MOVQ CX, 0x38(SP)

0 x48060d 488b6c2420 MOVQ 0x20(SP), BP

0 x480612 4883c428 ADDQ $0x28, SP

0 x480616 c3 RET

0 x480617 e814a5fcff CALL runtime.morestack_noctxt(SB)

0 x48061c eba2 JMP github.com / knz / go-panic / src.MakeInterface2(SB)

Holy Moly. What just went on?
The function became suddently much larger because it is now making a call to another function

runtime.convT2I64.
As per the previous sections, as soon as there is a callee, the caller must set up an activation record, so

we see 1) a check the stack is large enough 2) adjusting the stack pointer 3) preserving the frame pointer for
stack unwinding during exceptions. This explains the prologue and epilogue, so the “meat” that remains,
taking this into account, is this:

0 x4805dd 488d053c020400 LEAQ go.itab.src.bar,src.Foo(SB), AX

0 x4805e4 48890424 MOVQ AX, 0(SP)

0 x4805e8 488d05e9f10b00 LEAQ src.x(SB), AX

0 x4805ef 4889442408 MOVQ AX, 0x8(SP)

0 x4805f4 e8e7b2f8ff CALL runtime.convT2I64(SB)

0 x4805f9 488b442410 MOVQ 0x10(SP), AX

0 x4805fe 488b4c2418 MOVQ 0x18(SP), CX

0 x480603 4889442430 MOVQ AX, 0x30(SP)

0 x480608 48894c2438 MOVQ CX, 0x38(SP)

What this does is to perform the regular Go call runtime.convT2I64(&bar_foo_vtable, y) and returns its result,
which is an interface and thus takes two words.

What does this function do?

func convT2I64(tab *itab, elem unsafe.Pointer) (i iface) {
t := tab._type
// [...]
var x unsafe.Pointer
// [...]

x = mallocgc(8, t, false)
*(*uint64)(x) = *(*uint64)(elem)

// [...]
i.tab = tab
i.data = x
return

}

What this does really is to call the heap allocator and allocate a slot in memory to store a copy of the
value provided, and a pointer to that heap-allocated slot is stored in the interface value.

In other words, in general, types that implement interfaces by value will mandate a trip to the heap
allocator every time a value of that type is turned into an interface value.

10

As a special case, if the value provided is the “zero value” for the type implementing the interface, the
heap allocation is avoided and a special “address to the zero value” is used instead to construct the interface
reference. This is checked by convT2I64 in the code I elided above:

if *(*uint64)(elem) == 0 {
x = unsafe.Pointer(&zeroVal[0])

} else {
x = mallocgc(8, t, false)
*(*uint64)(x) = *(*uint64)(elem)

}

This is correct because the function convT2I64 is only used for 64-bit types that implement the interface.
This is true of the struct that I defined above, which contains just one 64-bit field.

There are many such convT2I functions for various type layouts that may implement the interface, for
example:

• convT2I16, convT2I32, convT2I64 for “small” types;

• convT2Istring, convT2Islice for string and slice types;

• convT2Inoptr for structs that do not contain pointers;

• convT2I for the general case.

All of them except for the general cases convT2Inoptr and convT2I will attempt to avoid the heap allocator
if the value is the zero value.

Nevertheless, in all these cases the caller that is constructing an interface value must check its stack
size and set up an activation record, because it is making a call.

So, in general, types that implement interfaces by value cause overhead when they are converted into
the interface type.

Interfaces for empty structs

There is just one, not-too-exciting super-special case: empty structs. These can implement the interface by
value without overhead:

type empty struct{}
func (empty) foo() {}
var x empty
func MakeInterface3() Foo { return x }

This gives us:

MakeInterface3:
0 x4805c0 488d0539020400 LEAQ go.itab.src.empty,src.Foo(SB), AX

0 x4805c7 4889442408 MOVQ AX, 0x8(SP)

0 x4805cc 488d05edf20b00 LEAQ runtime.zerobase(SB), AX

0 x4805d3 4889442410 MOVQ AX, 0x10(SP)

0 x4805d8 c3 RET

The “value part” of interface values for empty structs is always &runtime.zerobase and can be computed
without a call and thus without overhead.

11

error is an interface type

Compare the following two functions:

func Simple1() int { return 123 }
func Simple2() (int, error) { return 123, nil }

And their generated code:

Simple1:
0 x4805b0 48c74424087b000000 MOVQ $0x7b, 0x8(SP)

0 x4805b9 c3 RET

Simple2:
0 x4805c0 48c74424087b000000 MOVQ $0x7b, 0x8(SP)

0 x4805c9 0f57c0 XORPS X0, X0

0 x4805cc 0f11442410 MOVUPS X0, 0x10(SP)

0 x4805d1 c3 RET

What we see here is that error being an interface, the function returning error must set up two extra
words of return value.

In the nil case this is still straightforward (at the expense of 16 bytes of extra zero data).
It is also still pretty straightforward if the error object was pre-allocated. For example:

var errDivByZero = errors.New("can't divide by zero")

func Compute(x, y float64) (float64, error) {
if y == 0 {
return 0, errDivByZero

}
return x / y, nil

}

Compiling to:

Compute:
0 x4805e0 f20f10442410 MOVSD_XMM 0x10(SP), X0 ; load y into X0

if y == 0 {

0 x4805e6 0f57c9 XORPS X1, X1 ; compute float64(0)

0 x4805e9 660f2ec1 UCOMISD X1, X0 ; is y == 0?

0 x4805ed 7521 JNE 0x480610 ; no: go to return x/y

0 x4805ef 7a1f JP 0x480610 ; no: go to return x/y
return 0, errDivByZero

0 x4805f1 488b05402c0a00 MOVQ src.errDivByZero + 8(SB), AX

0 x4805f8 488b0d312c0a00 MOVQ src.errDivByZero(SB), CX

0 x4805ff f20f114c2418 MOVSD_XMM X1, 0x18(SP)

0 x480605 48894c2420 MOVQ CX, 0x20(SP)

0 x48060a 4889442428 MOVQ AX, 0x28(SP)

0 x48060f c3 RET

return x / y, nil

0 x480610 f20f104c2408 MOVSD_XMM 0x8(SP), X1 ; load x into X1

0 x480616 f20f5ec8 DIVSD X0, X1 ; compute x / y

0 x48061a f20f114c2418 MOVSD_XMM X1, 0x18(SP) ; return x / y

0 x480620 0f57c0 XORPS X0, X0 ; compute error(nil)

0 x480623 0f11442420 MOVUPS X0, 0x20(SP) ; return error(nil)

0 x480628 c3 RET

12

Common case: computed errors

The simple case where error objects are pre-allocated is handled efficiently, but in real world code the error
text is usually computed to include some contextual information, for example:

func Compute(x, y float64) (float64, error) {
if y == 0 {
return 0, fmt.Errorf("can't divide %f by zero", x)

}
return x / y, nil

}

At the moment we organize the function this way, we are paying the price of a call to another function:
setting up an activation record, frame pointer, checking the stack size, etc. Even on the “hot” path where
the error does not occur.

This makes the relatively “simple” function Compute, where the crux of the computation is just 1 instruc-
tion, divsd, extremely large:

Compute:
; [... stack size check, SP and BP set up elided ...]
0 x482201 f20f10442468 MOVSD_XMM 0x68(SP), X0 ; load y

if y == 0 { ; like before

0 x482207 0f57c9 XORPS X1, X1 ; compute float64(0)

0 x48220a 660f2ec1 UCOMISD X1, X0 ; is y == 0?

0 x48220e 0f85a7000000 JNE 0x4822bb ; no: go to return x/y

0 x482214 0f8aa1000000 JP 0x4822bb ; no: go to return x/y

return 0, fmt.Errorf(" can ' t divide %f by zero " , x)

0 x48221a f20f10442460 MOVSD_XMM 0x60(SP), X0 ; load x

; The following code allocates a special struct using
; runtime.convT2E64 to pass the variable arguments to
; fmt.Errorf. The struct contains the value of x.
0 x482220 f20f11442438 MOVSD_XMM X0, 0x38(SP)

0 x482226 0f57c0 XORPS X0, X0

0 x482229 0f11442440 MOVUPS X0, 0x40(SP)

0 x48222e 488d05cbf80000 LEAQ 0xf8cb(IP), AX

0 x482235 48890424 MOVQ AX, 0(SP)

0 x482239 488d442438 LEAQ 0x38(SP), AX

0 x48223e 4889442408 MOVQ AX, 0x8(SP)

0 x482243 e83895f8ff CALL runtime.convT2E64(SB)

0 x482248 488b442410 MOVQ 0x10(SP), AX

0 x48224d 488b4c2418 MOVQ 0x18(SP), CX

; The varargs struct is saved for later on the stack.
0 x482252 4889442440 MOVQ AX, 0x40(SP)

0 x482257 48894c2448 MOVQ CX, 0x48(SP)

; The constant string "can't divide..." is passed in the argument list of fmt.Errorf.
0 x48225c 488d05111e0300 LEAQ 0x31e11(IP), AX

0 x482263 48890424 MOVQ AX, 0(SP)

0 x482267 48c744240817000000 MOVQ $0x17, 0x8(SP)

; A slice object is created to point to the vararg struct and given
; as argument to fmt.Errorf.
0 x482270 488d442440 LEAQ 0x40(SP), AX

0 x482275 4889442410 MOVQ AX, 0x10(SP)

13

0 x48227a 48c744241801000000 MOVQ $0x1, 0x18(SP)

0 x482283 48c744242001000000 MOVQ $0x1, 0x20(SP)

0 x48228c e8cf81ffff CALL fmt.Errorf(SB)
; The result value of fmt.Errorf is retrieved.
0 x482291 488b442428 MOVQ 0x28(SP), AX

0 x482296 488b4c2430 MOVQ 0x30(SP), CX

; return float64(0) as first return value:
0 x48229b 0f57c0 XORPS X0, X0

0 x48229e f20f11442470 MOVSD_XMM X0, 0x70(SP)
; return the result of fmt.Errorf as 2nd return value:
0 x4822a4 4889442478 MOVQ AX, 0x78(SP)

0 x4822a9 48898c2480000000 MOVQ CX, 0x80(SP)
; [... restore BP/SP ...]
0 x4822ba c3 RET

return x / y, nil ; same as before

0 x4822bb f20f104c2460 MOVSD_XMM 0x60(SP), X1 ; load x into X1

0 x4822c1 f20f5ec8 DIVSD X0, X1 ; compute x / y

0 x4822c5 f20f114c2470 MOVSD_XMM X1, 0x70(SP) ; return x / y

0 x4822cb 0f57c0 XORPS X0, X0 ; compute error(nil)

0 x4822ce 0f11442478 MOVUPS X0, 0x78(SP) ; return error(nil)
; [... restore BP/SP ...]
0 x4822dc c3 RET

So what are we learning here?

• fmt.Errorf (like all vararg functions in Go) get additional argument passing code: the arguments are
stored in the caller’s activation record, and a slice object is given as argument to the vararg-accepting
callee.

• this price is paid on the cold path to any real-world function that allocates error objects dynamically
when an error is encountered.

We are not considering here the cost of running fmt.Errorf itself, which usually has to go to the heap
allocator multiple times because it does not know in advance how long the computed string will be.

Note
A more thorough review of how vararg calls work is available in this followup analysis.

Common case: testing for errors

The other common case is when a caller checks the error returned by a callee, like this:

func Caller() (int, error) {
v, err := Callee()
if err != nil {
return -1, err

}
return v + 1, nil

}

This gives us:

14

https://dr-knz.net/go-calling-convention-x86-64-2020.html#vararg-calls

Caller:
; [... stack size check, SP and BP set up elided ...]

v, err : = Callee()

0 x48061d e8beffffff CALL src.Callee(SB)

0 x480622 488b442410 MOVQ 0x10(SP), AX ; retrieve return value

0 x480627 488b0c24 MOVQ 0(SP), CX ; load error vtable

0 x48062b 488b542408 MOVQ 0x8(SP), DX ; load error value

if err ! = nil {

0 x480630 4885d2 TESTQ DX, DX ; is the value part nil?

0 x480633 741d JE 0x480652 ; yes, go to v+1 below
return -1, err

0 x480635 48c7442428ffffffff MOVQ $-0x1, 0x28(SP) ; return -1

0 x48063e 4889542430 MOVQ DX, 0x30(SP) ; return err.vtable

0 x480643 4889442438 MOVQ AX, 0x38(SP) ; return err.value
; [... restore BP/SP ...]
0 x480651 c3 RET

return v + 1, nil

0 x480652 488d4101 LEAQ 0x1(CX), AX ; compute v + 1

0 x480656 4889442428 MOVQ AX, 0x28(SP) ; return v + 1

0 x48065b 0f57c0 XORPS X0, X0 ; compute error(nil)

0 x48065e 0f11442430 MOVUPS X0, 0x30(SP) ; return error(nil)
; [... restore BP/SP ...]
0 x48066c c3 RET

So any time a caller needs to check the error return of a callee, there are 2 instructions to retrieve the
error value, 2 instructions to test whether it is nil, and in the “hot” path where there is no error two more
instruction on every return path to return error(nil).

For reference (we’ll consider that again below), if there was no error to check/propagate the function
becomes much simpler:

Caller:
; [... stack size check, SP and BP set up elided ...]
0 x48060d e8ceffffff CALL github.com / knz / go-panic / src.Callee2(SB)

0 x480612 488b0424 MOVQ 0(SP), AX ; retrieve return value

0 x480616 48ffc0 INCQ AX ; compute v + 1

0 x480619 4889442418 MOVQ AX, 0x18(SP) ; return v + 1
; [... restore BP/SP ...]
0 x480627 c3 RET

(No extra instructions, no extra branch.)

Implementation of defer

Note
The mechanism presented in this section is still used as of Go 1.15. However, Go 1.15 has an
optimization that is enabled in a common case which simplifies the mechanism further. We will
see how that works in this followup analysis.

Go provides a feature to register, from the body of a function, a list of callback functions that are
guaranteed to be called when the call terminates, even during exception propagation.

(This is useful e.g. to ensure that resources are freed and mutexes unlocked regardless of what happens
with one of the callees.)

How does this work? Let’s consider the simple example:

15

https://dr-knz.net/go-calling-convention-x86-64-2020.html#implementation-of-defer

func Defer1() int { defer f(); return 123 }

This compiles to:

Defer1:
; [... stack size check, SP and BP set up elided ...]

; Prepare the return value 0. This is set in memory because
; (theoretically, albeit not in this particular example) the deferred
; function can access the return value and may do so before it was
; set by the remainder of the function body.
0 x48208d 48c744242000000000 MOVQ $0x0, 0x20(SP)

; Prepare the defer by calling runtime.deferproc(0, &f)
0 x482096 c7042400000000 MOVL $0x0, 0(SP)

0 x48209d 488d05f46e0300 LEAQ 0x36ef4(IP), AX

0 x4820a4 4889442408 MOVQ AX, 0x8(SP)

0 x4820a9 e8822afaff CALL runtime.deferproc(SB)

; Special check of the return value of runtime.deferproc.
; In the common case, deferproc returns 0.
; If a panic is generated by the function body (or one of the callees),
; and the defer function catches the panic with `recover`, then
; control will re-return from `deferproc` with value 1.
0 x4820ae 85c0 TESTL AX, AX

0 x4820b0 7519 JNE 0x4820cb ; has a panic been caught?

; Prepare the return value 123.
0 x4820b2 48c74424207b000000 MOVQ $0x7b, 0x20(SP)

0 x4820bb 90 NOPL
; Ensure the defers are run.
0 x4820bc e84f33faff CALL runtime.deferreturn(SB)
; [... restore BP/SP ...]
0 x4820ca c3 RET

; We've caught a panic. We're still running the defers.
0 x4820cb 90 NOPL

0 x4820cc e83f33faff CALL runtime.deferreturn(SB)
; [... restore BP/SP ...]
0 x4820da c3 RET

How to read this:

• the code generated for function that contains defer always contains calls to deferproc and defereturn and
thus needs an activation record, and thus a stack size check and frame pointer setup.

• if a function contains defer there will be a call to deferreturn on every return path.

• the actual callback is not stored in the activation record of the function; instead what deferproc does
(internally) is store the callback in a linked list from the goroutine’s header struct. deferreturn runs
and pops the entries from that linked list.

The code is generated this way regardless of whether the deferred function contains recover(), see below.

Deferred closures

In real-world uses, the deferred function is actually a closure that has access to the enclosing function’s
local variables. For example:

16

func Defer2() (res int) {
defer func() {

res = 123
}()
return -1

}

This compiles to:

Defer2:
; [... stack size check, SP and BP set up elided ...]

; Store the zero value as return value.
0 x48208d 48c744242800000000 MOVQ $0x0, 0x28(SP)

; Store the frame pointer of Defer2 for use by the deferred closure.
0 x482096 488d442428 LEAQ 0x28(SP), AX

0 x48209b 4889442410 MOVQ AX, 0x10(SP)

; Call runtime.deferproc(8, &Defer2.func1)
; Where Defer2.func1 is the code generated for the closure, see below.
; The closure takes an implicit argument, which is the frame
; pointer of the enclosing function, where it can peek
; at the enclosing function's local variables.
0 x4820a0 c7042408000000 MOVL $0x8, 0(SP)

0 x4820a7 488d05b26e0300 LEAQ 0x36eb2(IP), AX

0 x4820ae 4889442408 MOVQ AX, 0x8(SP)

0 x4820b3 e8782afaff CALL runtime.deferproc(SB)

; Are we recovering from a panic?
0 x4820b8 85c0 TESTL AX, AX

0 x4820ba 7519 JNE 0x4820d5

; Common path.
; Set -1 as return value.
0 x4820bc 48c744242800000000 MOVQ $-1, 0x28(SP)

0 x4820c5 90 NOPL
; Run the defers.
0 x4820c6 e84533faff CALL runtime.deferreturn(SB)
; [... restore BP/SP ...]
0 x4820d4 c3 RET

; Recovering from a panic.
0 x4820d5 90 NOPL

0 x4820d6 e83533faff CALL runtime.deferreturn(SB)
; [... restore BP/SP ...]
0 x4820e4 c3 RET

Defer2.func1:
; Load the frame pointer of the enclosing function.
MOVQ 0x8(SP), AX
; Store the new value into the return value slot of the
; enclosing function's frame.
MOVQ $123, (AX)
RET

So a closure gets compiled as an anonymous function which returns a pointer to the enclosing frame
as implicit first argument.

Every non-local variable accessed in the closure is marked to force spill in the enclosing function, to
ensure they are allocated on the stack and not in registers.

17

Since return values and arguments are always on the stack anyway, using them in closures thus comes
at no additional overhead. This would be different for other variables which could avoid a stack allocation
otherwise.

Note
This section focuses specifically on deferred closures. This gives the Go compiler the guarantee
that the closure itsself does not escape.
If the closure did escape, then additional machinery would kick in to allocate the closure on the
heap together with the variables it needs to access from the enclosing function.

Implementation of panic

Using panic() in a function

A function that uses panic() without computing anything (including, for now, not computing any object as
exception) looks like this:

func Panic1() { panic(nil) }
var x int
func Panic2() { panic(&x) }

This gives us:

Panic1:
; [... stack size check, SP and BP set up elided ...]
0 x4805fd 0f57c0 XORPS X0, X0

0 x480600 0f110424 MOVUPS X0, 0(SP)

0 x480604 e8f747faff CALL runtime.gopanic(SB)

0 x480609 0f0b UD2

Panic2:
; [... stack size check, SP and BP set up elided ...]
0 x4806dd 488d05bcaf0000 LEAQ 0xafbc(IP), AX

0 x4806e4 48890424 MOVQ AX, 0(SP)

0 x4806e8 488d05f1f00b00 LEAQ src.x(SB), AX

0 x4806ef 4889442408 MOVQ AX, 0x8(SP)

0 x4806f4 e80747faff CALL runtime.gopanic(SB)

0 x4806f9 0f0b UD2

What is going on?
Using panic() in the body of a function translates in any case to a call to runtime.gopanic(). Therefore in

any case the function needs to check its stack size and set up an activation record, like every other function
that calls anything.

Then for the call to runtime.gopanic(): this function takes a single argument of type interface{}. So the caller
that invokes panic() must create an interface value with whatever object/value it wants to use as exception.

• In Panic2() the regular vtable for interface{} is used and the address of x is passed as interface value.

• In Panic1() the Go compiler uses another special-case optimization: interface{}(nil) is implemented
using a zero vtable.

18

So really, from the perspective of generated code, using panic() in the body of a function looks very
much like any other function call, except it is actually simpler: the compiler knows that runtime.gopanic()

does not return and thus does not need to generate instructions to return the caller on the return path
from the call to gopanic.

Finally, if the function needs to create/allocate an object to throw as exception, the code to prepare this
object (initialization, allocation, etc.) will be added just as usual.

Exceptions for intermediate functions

The Go code generation of a function that calls another function that may throw an exception does not
handle anything specially: it sets up an activation record and prepares the frame pointer as usual.

This price paid for setting up the frame pointer is paid anytime another function is called, irrespective
of whether it will throw an exception or not.

Therefore, exception propagation in Go is cheaper than the testing and propagation of error results.

Catching exceptions: defer + recover

As of Go 1.10 the language does not provide a simple-to-use control structure like try-catch.
Instead, it provides a special pseudo-function called recover(). When the author of a function foo()wishes

to catch an exception generated in foo() or one of its callees, the code must be structured as follows:

• a separate function or closure (other than foo) must contain a call to recover();

• a call to that separate function must be deferred from foo.

Low-level mechanism

We can look at the mechanism by compiling the following:

func Recovering(r *int) {
// The pseudo-function recover() returns nil by default, except when
// called in a deferred activation, in which case it catches the
// exception object, stops stack unwinding and returns the exception
// object as its return value.
if recover() != nil {

*r = 123
}

}

func TryCatch() (res int) {
defer Recovering(&res)
// call a function that may throw an exception.
f()
// Regular path: return -1
res = -1

}

In this example, the TryCatch function is compiled like the functions Defer1/Defer2 of the previous section,
so it is not detailed further. The interesting part is Recovering:

Recovering:
; [... stack size check, SP and BP set up elided ...]

19

; Call runtime.gorecover(), giving it the address of Recover's
; activation record as argument.
0 x48208d 488d442428 LEAQ 0x28(SP), AX

0 x482092 48890424 MOVQ AX, 0(SP)

0 x482096 e8653efaff CALL runtime.gorecover(SB)

; Check the return value.
0 x48209b 488b442408 MOVQ 0x8(SP), AX

0 x4820a0 4885c0 TESTQ AX, AX ; is it nil?

0 x4820a3 740c JE 0x4820b1 ; yes, go to the return path below.

; Retrieve the argument r
0 x4820a5 488b442428 MOVQ 0x28(SP), AX
; Set *r = 123
0 x4820aa 48c7007b000000 MOVQ $0x7b, 0(AX)

0 x4820b1
; [... restore BP/SP ...]

0 x4820ba c3 RET

Because using the pseudo-function recover() compiles to a function call, the Recovering function needs its
own activation record, thus stack size check, frame pointer, etc.

What the gorecover() function internally does, in turn, is to check if there is an exception propagation in
progress. If there is, it stops the propagation and returns the panic object. If there is not, it simply returns
nil.

(To “stop the propagation” it sets a flag in the panic object / goroutine struct. This is subsequently
picked up by the unwind mechanism when the deferred function terminates. See the source code in
src/runtime/panic.go for details.)

Cost of defer + recover

A function that wishes to catch an exception needs to defer the other function that will actually do the
catch.

This incurs the cost of defer always, even when the exception does not occur:

• setting up an activation record (checking the stack size, adjusting the stack pointer, setting the frame
pointer, etc.) because there will be a call in any case.

• setting up the deferred call in the goroutine header struct at the beginning.

• performing the deferred call on every return path.

The first cost is only overhead if the function catching the exception did not otherwise contain function
calls and could have avoided allocating an activation record. For example, a “small” function that merely
accesses some existing structs and may only panic due to e.g. a nil pointer dereference, would see that
cost as overhead.

The other two costs are relatively low:

• setting up the deferred call does not need heap allocation. Its code path is relatively short. The main
price it pays is accessing the goroutine header struct and a couple conditional branches.

• running the deferred calls however incurs:

20

– the price of jumping around the deferred call list (a few memory accesses but no conditional
branch, so fairly innocuous);

– running the body of the actual deferred functions. This in turn costs the overhead of setting
up and tearing down their activation record (because they’re probably calling other functions,
e.g. when they use recover) even when there is no exception to catch.

We will look at empirical measurements in a separate article.

An interesting question: error vs panic?

What is cheaper: handling exceptions via panic / recover, or passing and testing error results with if err :=

...; err != nil { return err }?
The analysis above so far reveals:

• at the point an exception/error is generated:

– in both cases the function that generates an exception/error usually needs an activation record
(stack size check, etc.)

∗ for panic, because of the call to runtime.gopanic;
∗ for both errors and panics, because of the call to fmt.Errorf or fmt.Sprintf to create a contextual
error object.

– in the specific case of a function that does not call other functions, and only returns pre-defined
error objects, using panic will incur an activation record whereas the function with an error
return will not need it.

– throwing an exception with panic results in less code usually, because the compiler does not
generate a return path.

To summarise, overall, the two approaches for the function(s) where exceptions/errors occur have
similar costs.

• in “leaf” functions that never produce exceptions/errors but must implement an interface type where
other implementors of the interfacemay produce exceptions/errors, handling exceptions/errors with
panic is always cheaper.
This is because the leaf function will neither contain panic nor the initialization of the extra nil return
value.

• at the point an exception/error is propagated without change, the panic-based handling is always
cheaper :

– it moves fewer result values around from callee to caller;
– it does not contain a test of the error return and the accompanying conditional branch;
– there is fewer code overall so less pressure on the I-cache.

• at the point an exception/error is caught and conditionally handled, then the panic-based handling
is always more expensive because it incurs the cost of defer and an extra activation record (for the
deferred closure/function) which the error-based handling does not require.

21

So in short, this is not a clear-cut case: panic-based exception handling is nearly-always cheaper for the
tree of callees, but more expensive for the code that catches the exception.

Using panic over error returns is thus only advantageous if there is enough computation in the call tree
to offset the cost of setting up the catch environment. This is true in particular:

• when the call tree where errors can be generated is guaranteed to always be deep/complex enough
that the savings of the panic-based handling will be noticeable.

• when the call tree is invoked multiple times and the catch environment can be set up just once for
all the calls.

I aim to complement this article with a later experiment to verify this hypothesis empirically.

Differences with gccgo

Important
(Erratum as of January 2020): The following observations were made in 2018 with all optimiza-
tions disabled. This is unfair to gccgo, as GCC’s optimization engine is quite capable. Once
enabled with -O, gccgo is in fact able to use registers to pass arguments. I might revisit this topic
in a followup article..

The GNU Compiler Collection now contains a Go compiler too called gccgo.
In contrast to 6g (the original Go compiler) this tries to mimic the native calling convention. This brings

potential performance benefits:

• arguments are passed in registers when possible.

• the first return value is passed in a register.

• attempts to use callee-save registers for temporaries.

However these benefits are not actually realized, because gccgo (as of GCC 8.2) also has the following
problems:

• it disables many standard GCC optimizations, like register reloading and (some forms of) temporary
variable elimination, and thus causes many more spills to memory than necessary.

• because the temporary variables spill to the stack nearly always, that means nearly every function
needs an activation record (not just those that call other functions or have many local variables) and
thus always need to check the stack size upfront.

These two limitations togethermake the code generated by gccgo unacceptably longer andmorememory-
heavy overall.

For example, the simple FuncAdd from the beginning of this document compiles with gccgo to:

22

FuncAdd:
3 b91: 64 48 3 b 24 25 70 00 cmp %fs:0x70,%rsp ; is the stack large enough?

3 b98: 00 00

3 b9a: 73 12 jae 3bae <src.FuncAdd+0x1d> ; yes, go below

3 b9c: 41 ba 08 00 00 00 mov $0x8,%r10d ; call __morestack

3 ba2: 41 bb 00 00 00 00 mov $0x0,%r11d

3 ba8: e8 36 10 00 00 callq 4be3 <__morestack>

; The following `retq` instruction on the return path to
; __morestack is not actually executed: `__morestack` is a standard
; GCC facility (not specific to Go) which auto-magically
; returns to the *next* instruction after its return address.
3 bad: c3 retq

; Main function body.

; Start by preparing the frame pointer.
3 bae: 55 push %rbp

3 baf: 48 89 e5 mov %rsp,%rbp

; Store the arguments x, y, z into temporaries on the stack.
3 bb2: 48 89 7 d e8 mov %rdi,-0x18(%rbp)

3 bb6: 48 89 75 e0 mov %rsi,-0x20(%rbp)

3 bba: 48 89 55 d8 mov %rdx,-0x28(%rbp)

; Store zero (the default value) into a temporary variable
; holding the return value at BP+8.
3 bbe: 48 c7 45 f8 00 00 00 movq $0x0,-0x8(%rbp)

3 bc5: 00
; Re-load the arguments x and y from the stack.
3 bc6: 48 8 b 55 e8 mov -0x18(%rbp),%rdx

3 bca: 48 8 b 45 e0 mov -0x20(%rbp),%rax
; Compute x + y.
3 bce: 48 01 d0 add %rdx,%rax
; Re-load z from the stack and compute x + y - z.
3 bd1: 48 2 b 45 d8 sub -0x28(%rbp),%rax
; Store the result value into the temporary variable
; for the return value.
3 bd5: 48 89 45 f8 mov %rax,-0x8(%rbp)
; Re-load the return value from the temporary variable into
; a register.
3 bd9: 48 8 b 45 f8 mov -0x8(%rbp),%rax

; Restore the frame pointer, return.
3 bdd: 5 d pop %rbp

3 bde: c3 retq

This is very sad. GCC for other languages than Go is perfectly able to eliminate temporary variables.
The following code would be just as correct:

FuncAdd:
add %rdi, %rsi, %rax
sub %rax, %rdx, %rax
retq

(Disclaimer: these limitations can be lifted in a later version of gccgo.)

23

Summary of observations

The low-level calling convention used by the Go compiler on x86-64 targets is memory-heavy: arguments
and return values are always passed on the stack. This can be contrasted with code generation by compilers
for other languages (C/C++, Rust, etc) where registers are used when possible for arguments and return
values.

The Go compiler uses dynamic registration (with a linked list of frame pointers) to prepare activation
records for stack unwinding. This incurs a stack setup overhead on any function that calls other functions,
even in the common case where stack unwinding does not occur. This can be contrasted with other lan-
guages that consider exceptions uncommon and implement table-driven unwinding, with no stack setup
overhead on the common path.

Arguments and return values incur the standard memory costs of data types in Go. Scalar and struct
types passed by value occupy their size on the stack. String and interface values use two words, slices use
three. Because error is an interface type, it occupies two words.

Building an error value to return is usually more expensive than other values because in most cases this
incurs a call to a vararg-accepting function (e.g. fmt.Errof).

The call sequence for vararg-accepting functions is the same as functions accepting slices as arguments,
but the caller must also prepare the slice’s contents on the stack to contain (a copy of) the argument values.

Go implements defer, a feature similar to finally in other languages. This is done by registering a callback
in the current lightweight thread (“goroutine”) at the beginning and executing the registered callbacks on
every return path. This mechanism does not require heap allocation but incurs a small overhead on the
control path.

Exceptions are thrown with panic() and caught with defer and recover(). Throwing the panic compiles
down to a regular call to an internal function of the run-time system. That internal function is then respon-
sible for stack unwinding. The compiler knows that panic() does not return and thus skips generating code
for a return path. The mechanism to catch exceptions is fully hidden inside the pseudo-function recover()

and does not require special handling for the code generator. Code generation makes no distinction be-
tween functions that may throw exceptions and those who are guaranteed to never throw.

The calling convention suggests there is a non-trivial trade-off between handling exceptional situations
with panic vs. using error return values and checking them at every intermediate step of a call stack. This
trade-off remains to be analyzed empirically in particular applications.

Next in the series:

• Measuring argument passing in Go and C++

• Measuring multiple return values in Go and C++

• Measuring errors vs. exceptions in Go and C++

• The Go low-level calling convention on x86-64 - New in 2020 and Go 1.15

• Errors vs exceptions in Go and C++ in 2020

Further reading

• JL Schilling — Optimizing away C++ exception handling — ACM SIGPLAN Notices, 1998

24

https://dr-knz.net/measuring-argument-passing-in-go-and-cpp.html
https://dr-knz.net/measuring-multiple-return-values-in-go-and-cpp.html
https://dr-knz.net/measuring-errors-vs-exceptions-in-go-and-cpp.html
https://dr-knz.net/go-calling-convention-x86-64-2020.html
https://dr-knz.net/go-errors-vs-exceptions-2020.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.8337&rep=rep1&type=pdf

• David Chase — proposal: cmd/compile: define register-based calling convention, January 2017, last
accessed July 2018

• Steven Huang — Golang Calling Convention (Chinese), August 2017, last accessed July 2018

• The Go Programming Language — Effective Go, last accessed July 2018

• Wikipedia — x64 Calling Conventions, last accessed July 2018

• Wikipedia — Exception handling implementation, last accessed July 2018

• Wikipedia — Structure of Call Stacks, last accessed July 2018

Copyright and licensing

Copyright © 2014-2021, Raphael ‘kena’ Poss. Permission is granted to distribute, reuse and modify this
document according to the terms of the Creative Commons Attribution-ShareAlike 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

25

https://github.com/golang/go/issues/18597
https://particle.cafe/blog/golang-calling-convention.html
https://golang.org/doc/effective_go.html
https://en.wikipedia.org/wiki/X86_calling_conventions
https://en.wikipedia.org/wiki/Exception_handling#Exception_handling_implementation
https://en.wikipedia.org/wiki/Call_stack#Structure
http://creativecommons.org/licenses/by-sa/4.0/

	Contents
	Introduction
	Argument and return values, call sequence
	Arguments and return value
	Call sequence: how a function gets called
	Aside: exceptions in C/C++
	Callee-save registers—or not

	The cost of pointers and interfaces
	Pointers use just one word
	Interfaces use two words
	Strings and slices use two and three words
	Constructing interface values
	Interfaces for empty structs

	error is an interface type
	Common case: computed errors
	Common case: testing for errors

	Implementation of defer
	Deferred closures

	Implementation of panic
	Using panic() in a function
	Exceptions for intermediate functions

	Catching exceptions: defer + recover
	Low-level mechanism
	Cost of defer + recover

	An interesting question: error vs panic?
	Differences with gccgo
	Summary of observations
	Further reading
	Copyright and licensing

