The Go low-level calling convention on x86-64 (updated)
What’s new in 2020 and in Go 1.15

Raphael ‘kena’ Poss

November 2020

modified: 2020-12-01
subtitle: What’s new in 2020 and in Go 1.15

slug: go-calling-convention-x86-64-2020
category: Programming
tags: golang, compilers, analysis, programming languages, c++

series: Go low-level code analysis

Contents

Introduction 3
Calling convention 3
Arguments and return value L 3
Call sequence: how a function getscalled 3
Callee-save registers—ornot i 4
The cost of pointers and interfaces o 4
Varargcalls 5
Exception handling 8
Implementation of defer L 8
Implementation of panic 9
Catching exceptions: defer + recover 10
Summary and conclusions 10
Copyright and licensing 11

Note

The latest version of this document can be found online at https://dr-knz.net/
go-calling-convention-x86-64-2020.html. Alternate formats: Source, PDF.

Introduction

Two years ago, this article reviewed the low-level code generation of the Go compiler, as of version 1.10.
A few things have changed since, and so an update is in order.

As previously, All tests below are performed using the freebsd/andes target; this time using go 1.15.5. The
assembly listing are produced with go tool objdump and use the Go assembler syntax.

Calling convention

Arguments and return value

The mechanisms for passing arguments and return values remain largely unchanged since go 1.10: they
are passed via memory, on the stack.

Call sequence: how a function gets called

As in Go 1.10, in 1.15 a function places arguments for its callee into its activation record, and makes space
for the return value there as well. The callee writes the return value the caller’s activation record.

As before, a side effect of this design is that when a function returns the same value as one of its
callees, it needs to read the return value from the callee from its own activation record, then place it back
onto the stack at a return value in its caller’s activation record. Tail call optimizations (TCO) thus remain
impossible.

Additionally, function prologues remain largely unchanged:

+ afunction that uses local variables needs to set up an activation record by adjusting the SP register,
and does this always in its prologue.

« as before, every function also sets up a frame pointer in the BP register to facilitate exception un-
winds.

« as before, a function that uses more than a few words of stack, or that performs a function call, also
needs to check the remaining size of the stack upfront and allocate more stack if needed. This is
because Go allocates tiny stacks to goroutines by default.

Naturally, the epilogue un-does these operations.
Here is an example function prologue and epilogue, taken from one of the Go runtime’s internal func-
tions:

inte rnal.cpu .Initialize:
; Check remaining stack size:
MOVQ FS:Oxfffffff8, CX
CMPQ 0x10(CX), SP ; at least 24 bytes on the stack?
JBE 0x401047 ; no: go to block at end of function below

; Allocate activation record:

https://dr-knz.net/go-calling-convention-x86-64-2020.html
https://dr-knz.net/go-calling-convention-x86-64-2020.html
https://dr-knz.net/go-calling-convention-x86-64-2020.txt
https://dr-knz.net/go-calling-convention-x86-64-2020.pdf
{filename}go-calling-convention-x86-64.rst
https://golang.org/doc/asm
https://en.wikipedia.org/wiki/Tail_call

SUBQ $6x18, SP ; 24 bytes in activation record

; Set up the frame pointer
MOVQ BP, 0x10(SP) ; BP is callee-save: store it
LEAQ O0x10(SP), BP ; set up new frame pointer

MOVQ 0x10(SP), BP ; restore the caller's frame pointer
ADDQ $6x18, SP ; deallocate the activation record
RET ; return

Bxs01047:

CALL runtime.morestack noctxt(SB) ; alloc more stack
JMP internal.cpu.Initialize(SB) , restart

Callee-save registers—or not

Go 1.15 did not evolve from 1.10: there are still no callee-save registers. All temporaries are spilled to the
stack upon a function call.

The cost of pointers and interfaces

The layout of pointers and interfaces remains unchanged:

a pointer takes one word.
« an interface takes two words: one for the vtable, one for the reference to the object.
« strings have two words: the length and a pointer to the string’s bytes.

+ slices have three words: the length, the capacity and a pointer to the data.

As before, interface references to empty structs use a zero pointer as object reference; the entirety of
the implementation is decided by the vtable pointer.

When an object implements an interface by value, in the general case converting the object to an in-
terface reference moves the object to the heap.

To see how this happens, we can use the following code:

// Define a struct type implementing the interface by value.
type bar struct{ x int }

func (bar) foo() {}

// Define a global variable so we don't use the heap allocator
var y bar

// Make an interface value.
func MakeInterface2() Foo { return y }

This gives us:

MakeInterface2:
; <function prologue>

; write y to 0(SP), as an argument to runtime.convT64

Bxs5c55d 488b57cC70900 MOVQ main.y(SB), AX
Bxsscs64 48890424 MOVQ AX, ©(SP)

; call runtime.convT64, this converts the object to a heap reference
Bx45c568 e833c5faff CALL runtime.convT64(SB)

; extract the return value

.x45c56d 488b442408 MOVQ 0x8(SP), AX

; take the vtable pointer

.x45c572 488d0d07c00200 LEAQ go.itab.main.bar,main.Foo(SB), CX
; write both to the return value slot for MakeInterface2

.x45c579 48894c2420 MOVQ CX, 0x20(SP)

.x45c57e 4889442428 MOVQ AX, 0x28(SP)

; <function epilogue>
Bx45cs8c 3 RET

This code generation in v1.15 is slightly different from what it was in v1.10; back then we would see

instead:

MakeInterface2:
; <function prologue>

; take the vtable pointer

.x4805dd 488d053c020400 LEAQ go.itab.src.bar,src.Foo(SB), AX
; pass it as argument to convT2I64

.x4805e4 48890424 MOVQ AX, 0O(SP)

; take the address of y

.x4805e8 488d05e9f10b00 LEAQ main.y(SB), AX

; pass it as argument to convT2I164

.x4805ef 4889442408 MOVQ AX, ©x8(SP)

; convert to interface reference

.x4805f4 e8e7b2f8ff CALL runtime.convT2I64(SB)

; copy the return value from runtime.convT2I64 to the return slot of MakeInterface2
.x4805f9 488b442410 MOVQ 0x10(SP), AX

.X4805fe 488b4c2418 MOVQ 0x18(SP), CX

.x480603 4889442430 MOVQ AX, 0x30(SP)

.x480608 48894c2438 MOVQ CX, ©x38(SP)

; <function epilogue>
[Bx4s0616 3 RET

This is a new optimization: the conversion of an object to an interface reference now costs 7 instruc-
tions instead of 9 previously. The main change is that previously, runtime.convr2164 Was responsible both for
moving the object to the heap and attaching the vtable pointer; whereas in v1.15 runtime.convT64 just moves
the object to the heap and returns a naked pointer, and the caller is responsible for attaching the vtable
pointer.

Additionally, another optimization is performed inside the convtes function: for certain specific values,
no heap allocation is performed. In v1.10, this optimization was restricted to the case of a single-word
value or struct that was initialized to its default (all zero bytes). In v1.15, the optimization was extended
to include all integer values smaller than 256 (i.e. 0x00-0xFF).

This optimization is available for all word-sized types or smaller. For example, it works with an integer
type implementing the interface directly, as well as for a struct with a single integer field.

Vararg calls

Go supports variable numbers of arguments, via the ... construct. In a nutshell, the caller prepares a slice
object on the stack and makes it point at the positional arguments (also on the stack), then passes that slice
as fixed-position argument to the callee.

In addition to this, if the vararg list was declared with an interface type (which is a common case,
for example fnt.printf has ...interface{}), a conversion from each argument value to an interface reference

must also take place. This conversion moves each argument to the heap in the general case, with a “small
numbers optimization” as described in the previous section.
Let us see how this looks like. First we can look at the case of a vararg list that is not an interface type:

func f(...int) {}

var x,y,z,w int
func caller() {
f(x,y,z,w)

This gives us:

caller:
; <function prologue>

; fill the slice:

XORPS X0, X0 ; set 2 words (128 bit) to zero in X0
MOVUPS X0, 0x18(SP) ; initialize the 4-element slice to zero
MOVUPS X0, 0x28(SP) ; initialize the 4-element slice to zero
MOVQ main.x(SB), AX

MOVQ AX, 0x18(SP) ; Store x into 1st position
MOVQ main.y(SB), AX
MOVQ AX, 0x20(SP) ; store y into 2nd position
MOVQ main.z(SB), AX
MOVQ AX, 0x28(SP) ; store z into 3rd position
MOVQ main.w(SB), AX
MOVQ AX, 0x30(SP) ; store w into 4th position

; prepare the slice as outgoing argument:

LEAQ 0x18(SP), AX ; store the base address
MOVQ AX, 0(SP)
MOVQ $0x4, Ox8(SP) ; store the length

MOVQ $0x4, 0x10(SP) ; store the capacity
CALL main.g(SB) ; call the function

; <function epilogue>
RET

So far, no surprises. It may be interesting to note that Go always wastes instructions to pre-initialize
the vararg slice to zero, even though it immediately populates it afterwards with the argument values. A
C++ compiler would not do that for vararg calls and simply writes the argument directly to their final
spots.

We can then compare what happens when the function takes its arguments using an interface type:

// note: now we have an interface type.
func f(...interface{}) {}

var x,y,z,w int

func caller() {
f(x,y,z,w)

This gives us:

caller:
; <function prologue>

; fill the slice:

XORPS X0, X0

MOVUPS X0, 0x38(SP)
MOVUPS X0, 0x48(SP)
MOVUPS X0, 0x58(SP)
MOVUPS X0, 0x68(SP)

MOVQ
MOVQ
LEAQ
MOVQ
LEAQ
MOVQ

MOVQ
MOVQ
MOVQ
LEAQ
MOVQ

MOVQ
MOVQ
MOVQ
LEAQ
MOVQ

MOVQ
MOVQ
MOVQ
LEAQ
MOVQ

LEAQ
MOVQ
MOVQ
MOVQ

CALL

; <function epilogue>

RET

main.x(SB), AX
AX, 0x30(SP)
0x7995(IP), AX
AX, ©x38(SP)
0x30(SP), CX
CX, 0x40(SP)

main.y(SB), CX
CX, 0x28(SP)
AX, 0x48(SP)
0x28(SP), CX
CX, 0x50(SP)

main.z(SB), CX
CX, 0x20(SP)
AX, 0x58(SP)
0x20(SP), CX
CX, 0x60(SP)

main.w(SB), CX
CX, 0x18(SP)
AX, 0x68(SP)
0x18(SP), AX
AX, 0x70(SP)

0x38(SP), AX
AX, 0(SP)
$0x4, 0x8(SP)
$0x4, 0x10(SP)

main.g(SB)

’

;

’

’

’

’

; copy x on

; place x's

; place the

; copy y on

; place the

; place the

; copy z on

; place the

; place the

; copy w on

; place the

; place the

; the slice'
; the slice'

; call the

Here are the main differences:

« Each position in the vararg slice now has two words instead of just one.

+ Each value passed must be passed by reference. Simple object types (such as integer heres) are
merely copied into the caller’s activation record, and the address of their stack copy is added to the

slice.

(The reason why the object is first copied to the stack, instead of placing the address to the global
variable directly in the slice, is that Go must preserve the sequential semantics that the value is
sampled at the time the call is performed, and will not change in the slice even if the global variable

; zero out the slice

the stack, out of the slice

interface{} vtable ptr in the slice

address of x's copy in the slice

the stack, out of the slice

same vtable ptr as x in the slice

address of y's copy in the slice

the stack, out of the slice

same vtable ptr as x in the slice

address of z's copy in the slice

the stack, out of the slice

same vtable ptr as x in the slice

address of w's copy in the slice

; set the slice base address as argument

s size
s capacity

function

is modified in the callee or another goroutine.)

« If the interface was non-trivial, we would also see a call to runtime.convT for each argument.

Exception handling

Implementation of defer

defer is the keyword by which a programmer can specify one or more callback functions to call on every
return path, including exception unwinds. This helps implement RAII patterns in Go.

In Go 1.10, each use of defer was translated to a call to runtime.deferproc which would register the deferred
call onto the current goroutine’s unwind stack. Because this was done via a call, every function containing
the defer keyword also had to check its stack size and prepare an activation record, even for functions that
did not perform function calls otherwise. In other words, the cost of using dgefer in “leaf” functions was rather
high.

Additionally, in Go 1.10, the compiler would place a call to runtime.deferreturn on every return path, and
that runtime function was responsible for performing the defer calls.

An example of these previous mechanisms is given in the previous analysis.

In contrast, Go 1.15 contains two optimizations that make the implementation of defer rather different
in the case when defer is used unconditionally—i.e. it is always reached from the function’s entry point. In
that case:

« when there are 8 uses of defer or fewer, the Go compiler optimizes them by writing the callbacks to
the function’s activation record directly. There is no need for a runtime.deferproc any more in that case.
During exception unwinding, the unwinding code knows where to look for defers in each activation
record.

« separately, the compiler also emits the full call sequences to the deferred functions in every return
path, so that the natural return control flow performs these calls, and there is no call to runtime.deferreturn.

This way, a function containing 8 or less unconditional defers to functions that themselves can be inlined
does not pay the overhead of setting up a caller context if it does not otherwise perform function calls.

(Naturally, these optimizations do not work if a defer is conditional, or occurs inside a loop.)

Here is an example:

func Deferl() int { defer f(); return 123 }

This compiles to:

Deferl:
; <function prologue>
Bx45cabd MOVQ $6x8, AX
.x45c4c4 MOVQ AX, 0x8(SP) ; set up a word full with zeroes
.x45c4c9 MOVB $0x0, Ox7(SP) ; set the first byte to zero (redundant)
; write zero to the return value slot
Bxsscace MOVQ $6x8, 0x20(SP)
; defer the call to f()
Bxs5c447 LEAQ Ox1b672(IP), AX
Bxs5cace MOVQ AX, Ox8(SP) ; write the address of f
.x45c4e3 MOVB $0x1, 0Ox7(SP) ; let the runtime know there is 1 defer
; write the return value 123
Bxs5caes MOVQ $6x7b, ©x20(SP)

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://dr-knz.net/go-calling-convention-x86-64.html#implementation-of-defer

, un-defer

.x45c4f1 MOVB $0x0, 0x7(SP) ; let the runtime know there is no more defer
; final call to f() on the return path
.x45c4f6 CALL main.f(SB)

; <function epilogue>
Bxss5cs04 RET

; the following code is called during unwinds after a recover,
; not on the common case:

.x45c505 CALL runtime.deferreturn(SB)
Bx45c50a MOVQ ©x16(SP), BP
Bxsscs0t ADDQ $0x18, SP

Bxssc513 RET

In this example, the () function is non-inlinable so the call to f() remains explicit in the generated
code. If () had been inlinable, then the return paths would be simplified and the pefer1() function would
not need an activation record.

Implementation of panic

Throwing an already-built value as an exception within a function body works in Go 1.15 very much like
in Go 1.10: as a call to the function runtime.gopanic. This function takes an argument of type interface{};
therefore, whatever value is passed must be promoted to an interface reference as explained above.

Here is an example:

func Panic() { panic(123) }

This compiles to:

Panic:
; <function prologue>

; load the vtable for interface{}:
LEAQ 0x78dc(IP), AX
MOVQ AX, 0O(SP)

; load the address of a static copy of the
; Integer value 123:

LEAQ 0x2afa9(IP), AX

MOVQ AX, 0Ox8(SP)

; call gopanic:

CALL runtime.gopanic(SB)

NOPL

; note: function epilogue omitted in this case

There is no surprise here—the compiler knows that the function never returns and thus the return path
(and, in this case, the entirety of the function’s epilogue) is omitted.

There is a small optimization in v1.15 compared to v1.10: the padding instruction after the call used
to be an undefined 2-byte opcode 0x0F0B (disassembled as UD2); this is now generated as a regular NOP,
which is smaller (just 1 byte, 0x90).

Catching exceptions: defer + recover

The mechanism for catching exception has not changed: any use of recover() in the source is compiled as a
regular function call to runtime.gorecover. As in previous versions, this halts the exception propagation and
outputs the panic object as return value.

Summary and conclusions

In this chapter, we revisited the findings from two years ago.
To a large extent, the low-level calling convention in Go v1.15 is not much different from what it was
in v1.10; the previous observations thus largely remain unchanged:

« arguments and return values are still passed via memory.

« activation records are still registered dynamically, instead of using static unwinding tables as is done
ine.g. C++.

« pointers occupy one word; string values and interface references, two; and slices occupy three words.

« the promotion of objects to interface references, when they implement the interface by value, re-
quires a move to the heap via a call to a runtime function in the general case.

The notable changes are as follows:

« converting a value to an interface reference has become simpler, as the caller does not pass the vtable
pointer to the runtime conv functions any more. This saves instructions on the way in and out of the
conversion.

« the “small value” optimization, which aims to avoid a heap allocation when promoting a value to an
interface reference, has been extended to all 1-word values from zero up to and including 255.

« when a function contains 8 or less non-conditional uses of defer, an optimization kicks in that pre-
vents calls to runtime.deferproc and runtime.deferreturn entirely. In that case, the deferred callback infor-
mation is stored in the function’s activation record. The exception unwinding code is now equipped
to find deferred callbacks there, in addition to the goroutine struct. This greatly reduces the runtime
overhead in the common case when a function only uses defer once or twice, in the main control
path.

Additionally, this time we visited a more detailed example of calling a vararg function, with the step-
by-step construction of the argument slice.

Because of the lack of major changes, the open question from last time just as valid with Go 1.15 as it
was in 1.10:

What is cheaper: handling exceptions via panic / recover, or passing and testing error results
With if err := ...; err !=nil { return err }?

This question is non-trivial because the cost of a panic call and the top-level error recovery with defer
and recover can be amortized across a workload. Where would the inflection point lie?

We will revisit this question in the next part.

Also in the series:

10

https://dr-knz.net/go-calling-convention-x86-64.html#id39
https://dr-knz.net/go-calling-convention-x86-64.html#an-interesting-question-error-vs-panic

+ The Go low-level calling convention on x86-64
« Measuring argument passing in Go and C++
« Measuring multiple return values in Go and C++

+ Measuring errors vs. exceptions in Go and C++

Copyright and licensing

Copyright © 2014-2024, Raphael ‘kena’ Poss. Permission is granted to distribute, reuse and modify this
document according to the terms of the Creative Commons Attribution-ShareAlike 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

11

https://dr-knz.net/go-calling-convention-x86-64.html
https://dr-knz.net/measuring-argument-passing-in-go-and-cpp.html
https://dr-knz.net/measuring-multiple-return-values-in-go-and-cpp.html
https://dr-knz.net/measuring-errors-vs-exceptions-in-go-and-cpp.html
http://creativecommons.org/licenses/by-sa/4.0/

	Contents
	Introduction
	Calling convention
	Arguments and return value
	Call sequence: how a function gets called
	Callee-save registers—or not
	The cost of pointers and interfaces
	Vararg calls

	Exception handling
	Implementation of defer
	Implementation of panic
	Catching exceptions: defer + recover

	Summary and conclusions
	Copyright and licensing

